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Introduction

“Perchè ha due nomi (il teorema di) Rouchè-Capelli? Perchè quando l’hanno fatto
l’algebra lineare non esisteva e la stavano inventando. L’algebra lineare di dimensione
finita è l’esempio più riuscito di una teoria in cui tutte le difficoltà sono state sbri-
ciolate, digerite nell’apparato definitorio. Cioè le definizioni sono date in modo cos̀ı
efficiente che tutto il resto è quasi un banale esempio. Cioè ogni cosa segue in modo
diretto, banale, dall’apparato definitorio.” - Prof. Riccardo Benedetti, 2012

The Kronecker-Weierstrass decomposition for matrix pencils is the equivalent of the
Jordan form for matrices (actually, it is an extension of it since the latter is obtained
by studying a matrix pencil of type A + λI). Just as Rouchè-Capelli theorem, such
decomposition is two-named since it was completely determined by Kronecker (1890,
[23]) and Weierstrass (1868, [36]) separately: Weierstrass determined the decomposi-
tion of regular pencils with respect to their elementary divisors since he was interested
in finding conditions for simultaneous congruence, and later Kronecker extended the
classification to singular pencils by studying their minimal indices. The similarity with
the Jordan form is in the nature of the invariants, but from a group action point of
view the Kronecker-Weierstrass form extends the “left-right equivalence” for matrices,
since its classes are given by left-right-multiplication and not by conjugacy (as for the
Jordan form).

The Kronecker-Wierstrass decomposition has several applications in different areas
of mathematics (and even other sciences), maybe the most known of which are the
generalized eigenvalues problem in numerical analysis and the study of linear differen-
tial equations in analysis. However, by birthright, it finds applications in algebra and
algebraic geometry too: indeed matrix pencils of size m×n have a natural structure of
tensors of type 2×m× n, and this leads to derive several properties of given algebraic
and geometric objects from the invariants of the corresponding matrix pencils, with the
advantage of working with (multi)linear algebra tools.

In this work we investigate some of the above applications. In particular, we study
how the Kronecker-Weierstrass decomposition (and invariants) applies to the Segre

v



vi Introduction

classification of intersections of quadrics and to tensor rank decomposition.
The classification of intersections of two quadrics is a classical result due to Corrado

Segre (1883-1884, [34], [33]) and it may be reformulated in terms of matrix pencils
since the pencils of quadrics may be represented by symmetric matrix pencils. In this
perspective the Kronecker-Weierstrass decomposition helps to completely classify such
intersections in terms of the algebraic Kronecker invariants. However this algebraic
classification is strictly related to the geometric classification (due to Dimca in 1983,
[10]) of some objects associated to the pencils of quadrics. Every such pencil defines
a projective line in the space of all quadrics and a projective variety given by its base
locus: the position of the line describes the regular part of the pencil, while the singu-
larities of the base locus describe its singular part.

The tensor rank decomposition is a as-classical-as-modern topic in algebraic geometry
with several applications to applied sciences. The Kronecker-Weierstrass decomposi-
tion plays a central role in the case of 2-slice tensors, that are tensors in K2⊗Km⊗Kn:
this comes from the correspondence between these tensors and the matrix pencils. This
identification allows to explicitly determine the different ranks of such tensors and to
classify their orbits with respect to the action by GL2×GLm×GLn. A particular topic
in tensor rank decomposition is the Waring decomposition problem, that is the problem
of finding the minimal decomposition of a homogeneous polynomial as sum of decom-
posable symmetric tensors: the problem is trivial for tensors in Km ⊗ Kn (since these
tensors may be represented as matrices and the rank of such tensors is just the rank
of the corresponding matrices) but it becomes more complicated for tensors of higher
order. The main classical tool in tensor rank decomposition is given by secant vari-
eties. However the symmetric tensors have the advantage of being seen as polynomials
and this leads to tools which simplify the study of the symmetric decomposition: the
most important of them is the apolarity lemma. Such result does not hold anymore
for general tensors but it is generalized by the nonabelian apolarity due to Oeding
and Ottaviani (2013, [30]), which translates the problem of decomposition in terms of
eigenvectors of tensors.

We now give a detailed insight of our thesis work.

Chapter 1 is just preliminary: first we introduce λ-matrices and their invariants
as a starting point to chapter 2, then we recall some basic properties about tensor
products and symmetric tensors which are the main characters of chapter 4.

Chapter 2 is about the decomposition of matrix pencils (i.e. degree-1 homogeneous
binomials with matrix coefficients) over a generic field K, denoted by Mm×n(K[µ, λ]1).
In the first section we introduce the notion of strict equivalence which defines the orbits
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with respect to the group action

GLm(K)×GLn(K) −→ Aut
(
Mm×n(K[µ, λ]1)

)
(P,Q) 7→

(
A(µ, λ) 7→ P ·A(µ, λ) ·tQ

)
Its invariants lead to the Kronecker-Weierstrass canonical form: we first classify the so-
called regular pencils via the elementary divisors, then the singular ones via the minimal
indices for columns and rows. This determines the representatives of the classes in the
(double) quotient

GLm(K)�
Mm×n(K[µ, λ]1)�GLn(K)

In the last section we focus on the symmetric pencils by exhibiting a symmetric Kro-
necker canonical form both over C and R.

In chapter 3 we apply the Kronecker decomposition of complex symmetric pencils to
intersections of complex projective quadrics. In the first section we determine the con-
ditions for the simultaneous reduction of complex quadratic forms in terms of Kronecker
invariants. In the second section we formulate the Segre classification of intersections
of projective quadrics in terms of pencils of quadrics via the so-called Segre symbol: we
explicitly classify all pencils of quadrics in P2

C and the regular pencils of quadrics in
P3
C, both schematically and geometrically (with the useful computation of the primary

decompositions on Macaulay2). In the last section we give a geometric interpretation
of the Kronecker form of pencils of quadrics in terms of projective lines and singularity
of the base loci via projective bundles: for a concrete approach we study the two geo-
metric objects relatively to the pencils of quadrics in P2

C and we list them in tables.

Chapter 4 offers a new perspective for matrix pencils and pencils of quadrics in
terms of tensors. We start by briefly introducing different notions of rank (multilinear,
border, symmetric) for generic tensors and the algebraic-geometric objects related to
them (Segre varieties, secant varieties, Veronese varieties). In the second section we
focus on tensors in K2 ⊗Km ⊗Kn, called 2-slice tensors: these are not a novelty since
they are in correspondence with matrix pencils

Mm×n(K[µ, λ]1)←→ K2 ⊗Km ⊗Kn

We introduce the GL-equivalence (which extends the strict equivalence for matrix pen-
cils) defined by the group action

GL2(K)×GLm(K)×GLn(K) −→ Aut
(
K2 ⊗Km ⊗Kn

)
(M,P,Q) 7→

(
u⊗ v ⊗ w 7→Mu⊗ Pv ⊗Qw

)



viii Introduction

and we find out a canonical form: in small dimensions there are finitely many orbits
and we compute their dimensions by studying the dimension of the Lie algebras of the
stabilizers. Moreover, the Kronecker form allows to determine their ranks both by a
direct combinatorial approach and by applying the discrete Fourier transform: these
are the contents of the central sections. We also focus on the cases m = n = 2, 3:
in these cases we list dimension, rank and border rank of all orbits, supported by an
implementation on Macaulay2. We conclude this chapter by determining the partially-
symmetric rank and the dimension of the orbits of tensors in K2 ⊗ Sym2(Km+1) with
respect to the group action

GL2(K)×GLm+1(K) −→ Aut
(
K2 ⊗ Sym2(Km+1)

)
(M,P ) 7→

(
u⊗ l2 7→Mu⊗ P · l2 ·tP

)
which correspond to pencils of quadrics in PmK : again we implement such computation
on Macaulay2 and we list the results in tables.

Chapter 5 is about the abelian and nonabelian apolarity theory. In the first sec-
tion we show the classical catalecticant method for solving the Waring problem: the
minimal decomposition of a symmetric tensor f ∈ Symd V is to be found in the zeros
of its apolar ideal f⊥; the kernels of the catalecticant maps

Ck,f : Symk V ∨ → Symd−k V

help to restrict the research loci. Since this method fails in many cases, in the second
section we introduce a generalization in terms of vector bundles: this language not
only allows to solve the gap of the previous method but it also suggests new methods
for the decomposition of general tensors, even not symmetric ones. The first two
sections are just introductory and motivational to the last one, where we recover the
nonabelian apolarity for general tensors in K2 ⊗ Sym2(Km+1) by deriving it from the
Kronecker decomposition of matrix pencils: in particular, the decomposition of the
tensor (B1, B2) ∈ K2⊗ Sym2(Km+1) is given by the common eigenvectors of the kernel
of the map

C(B1,B2) : slm+1(C) −→ ∧2 V ⊕
∧2 V

A 7→
(
AB1 −B1(tA) , AB2 −B2(tA)

)
We also exhibit an implementation of it on Macaulay2 (see Ch.6, §4) which allows to
get hand dirty in small dimension.

In chapter 6 we collect all our implementations on Macaulay2: they were made for
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two reasons, as support to lighten calculations and as cast out nines for the theorical
statements. The implementations in the first section (about the Kronecker invariants)
and in the last one (about the common eigenvectors for nonabelian apolarity) had the
purpose of producing concrete examples which helped to get familiarity with the the-
ory. Instead, the implemetations in the two sections in the middle (about the orbit
dimensions) were specifically made to speed up a large number of calculations (and to
avoid typical hand calculation errors as well!).
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Chapter 1

Preliminaries

Let K be a field with characteristic 0, not necessarily algebraically closed.
We will work with finite dimensional vector spaces over K.

1.1 λ-matrices and λ-equivalence

Let K[λ] be the ring of the polynomials in the variable λ with coefficients in K.

Definition. A λ-matrix, or polynomial matrix, is a matrix A(λ) whose entries are
polynomials in K[λ].

We may represent a λ-matrix A(λ) as a matrix polynomial1 A0 +A1λ+ · · ·+Akλ
k,

where k is the highest of the degrees of the elements of A(λ). Thus we may think at the
set of λ-matrices of size m × n as the matrix algebra Mm×n(K[λ]) or the polynomial
algebra (Mm×n(K))[λ]. Consider the subalgebra

GLm(K[λ]) = {P (λ) ∈Mm(K[λ]) | detP (λ) ∈ K×}

of invertible λ-matrices of size m and consider the group action

GLm(K[λ])×GLn(K[λ]) −→ Aut
(
Mm×n(K[λ])

)
(P (λ), Q(λ)) 7→

(
A(λ) 7→ P (λ) ·A(λ) ·tQ(λ)

)
Definition. Two λ-matrices A(λ) and B(λ) of size m×n are said to be λ-equivalent
if they are in the same orbit with respect to the above group action.

1a polynomial with matrix coefficients

1
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Since K[λ] is a PID, from commutative algebra we know that every λ-matrix A(λ)
of size m× n and rank r is equivalent to a canonical diagonal λ-matrix of the form

d1(λ) 0 . . . 0

d2(λ)
...

...
. . .

dr(λ) 0
...

...

0 . . . 0


(1.1)

where d1(λ), . . . , dr(λ) ∈ K[λ]\{0} are monics with the divisibility property di(λ) | di+1(λ)
and they are uniquely determined by A(λ). Such form is said to be the Smith canon-
ical form of the matrix.

Invariant polynomials. We want to find a complete system of invariants for λ-
equivalence of λ-matrices. We recall the notion of minor of order h of a given matrix
A: it is the determinant of a submatrix of A of size h× h of the form

ai1j1 . . . ai1jh
...

. . .
...

aihj1 . . . aihjh


If A is a matrix of rank r, then every minor of order h > r of A is zero.

Let gj(λ) be the greatest common divisor of all minors of order j in A(λ). By a simple
count it turns out that each one of these polynomials is divided by the preceding one,
i.e. 1 = g0(λ) | g1(λ) | . . . | gr(λ).

Definition. The invariant polynomials of A(λ) are the quotients

ij(λ) = gr−j+1(λ)
gr−j(λ) for j = 1 : r

These polynomials are said invariants because they are such under equivalent trans-
formations of the λ-matrix. We may observe that, given D(λ) the diagonal matrix in
(1.1), its invariant polynomials are

i1(λ) = dr(λ) , . . . , ir(λ) = d1(λ)

Moreover by equivalence we deduce that these are exactly the invariant polynomials of
every λ-matrix equivalent to such D(λ). Thus the following holds.
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Fact 1.1.1. The invariant polynomials form a complete system of invariants for λ-
equivalence of λ-matrices, i.e. two λ-matrices of the same size are λ-equivalent if and
only if they have the same invariant polynomials ij(λ).

By the divisibility property of the polynomials defining the Smith canonical form, it
follows that in the sequence of invariant polynomials i1(λ), . . . , ir(λ) every polynomial
divides the preceding one, i.e.

ir(λ) | ir−1(λ) | . . . | i1(λ)

Elementary divisors. We may wonder how invariant polynomials behave in a block-
diagonal matrix

C(λ) =
[
A(λ) 0

0 B(λ)

]
We may hope that the invariant polynomials of C(λ) are just the union of the ones of
A(λ) and B(λ) but in general this does not hold: it is enough to think that the invariant
polynomials have the property of divisibility but in general the invariant polynomials
of A(λ) and B(λ) could not have any relations. We need to add one more hypothesis
to make things work.

Fact 1.1.2. Given C(λ) = diag(A(λ), B(λ)) a block-diagonal λ-matrix, if every in-
variant polynomial of A(λ) divides every invariant polynomial of B(λ), then the set
of invariant polynomials of C(λ) is the union of the invariant polynomials of the two
diagonal blocks.

In the general case to determine the invariant polynomials of C(λ) we need to intro-
duce a new concept. Since K[λ] is a UFD, we can decompose each invariant polynomial
into powers of irreducible factors over K. Moreover the divisibility property allow us
to consider the same irreducible factors for all the invariant polynomials and to let just
their powers vary:

i1(λ) = ϕ1(λ)e
(1)
1 · . . . · ϕs(λ)e

(1)
s

...

ir(λ) = ϕ1(λ)e
(r)
1 · . . . · ϕs(λ)e

(r)
s

where e(1)
j ≥ e

(2)
j ≥ . . . ≥ e

(r)
j ≥ 0 for all j = 1 : r and each irreducible factor is monic

since each invariant polynomial is so. We observe that in the above notation there are
powers which are just 1 because we have choosen to represent the invariant polynomials
with the same set of irreducible factors.

Definition. The non-trivial powers ϕj(λ)e
(h)
j for all j = 1 : s, h = 1 : r are called

elementary divisors of the λ-matrix A(λ) over the field K.
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Note: We consider 1 as elementary divisor only when there exists an invariant polyno-
mial ij0(λ) = 1. Obviously such elementary divisors would change if we consider the
λ-matrix over another field since prime factorizations could be different.

In the case of block-diagonal λ-matrix, the elementary divisors behave better than
the invariant polynomials.

Fact 1.1.3. Given C(λ) = diag(A(λ), B(λ)) a block-diagonal λ-matrix, the set of
elementary divisors of C(λ) is always obtained by the union of the elementary divisors
of A(λ) with those of B(λ).

In the second chapter we will focus on λ-matrices of degree 1, i.e. linear polyno-
mials with coefficient in Mm×n(K) of the form A + λB, and we will introduce a new
equivalence, called strict equivalence, which is finer than the λ-equivalence and whose
complete system of invariants includes the elementary divisors.

1.2 Basics on tensors

Theorem 1.2.1 (Definition). Let V1, . . . , Vd be K-vector spaces (not necessarily finite
dimensional). There exist (unique up to isomorphism) a K-vector space denoted by
V1 ⊗ . . . ⊗ Vd and a multilinear map g : V1 × . . . × Vd → V1 ⊗ . . . ⊗ Vd such that the
following universal property holds:

∀Z K-vector space, ∀f : V1 × . . . × Vd → Z multilinear map there exists a
unique linear map h : V1 ⊗ . . . ⊗ Vd → Z which makes the following diagram
commute:

V1 × . . .× Vd V1 ⊗ . . .⊗ Vd

Z

�

g

f h

Such vector space V1 ⊗ . . . ⊗ Vd is called tensor product and its elements tensors:
in particular the tensors in Im(g : V1 × . . . × Vd → V1 ⊗ . . . ⊗ Vd) (i.e. the ones of the
form v1 ⊗ . . .⊗ vd) are said decomposable. Moreover, given f : V1 × . . .× Vd → Z a
multilinear map, the corresponding linear map h : V1 ⊗ . . .⊗ Vd → Z is defined on the
decomposable tensors by h(v1 ⊗ . . .⊗ vd) = f(v1, . . . , vd) and extended by linearity to
the whole space.

Note: Historically the tensor product was introduced to linearize a multilinear map
from a cartesian product V1 × . . .× Vd to another vector space Z: indeed we note that
in the above theorem-definition the map h given by the universal property is linear and
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its making diagram commute is the same that linearizing the multilinear map f . The
construction of the tensor product makes clear why it linearizes multilinear maps ([1,
Proposition 2.12]).

Even if the definition holds in infinite dimension too, from now on we will assume
to work with finite dimensional vector spaces: indeed in this case the isomorphism
V ' V ∨∨ between a vector space and its bidual space holds and this leads to interest-
ing results. Given U, V,W (finite dimensional) K-vector spaces, we recall the following
properties:

• (associativity) U ⊗ V ⊗W ' (U ⊗ V )⊗W ' U ⊗ (V ⊗W );

• U ⊗ V ' V ⊗ U and U ⊗K ' U ;

• ∃ ! isomorphism U∨ ⊗ V ∨ ⊗W ' Bil(U, V ;W ) such that

f ⊗ g ⊗ w 7→
(
(u, v) 7→ f(u)g(v)w

)
and in particular V ⊗W ' Bil(V ∨,W∨;K);

• if V = 〈v1, . . . vm〉K and W = 〈w1, . . . , wn〉K, then a basis of V ⊗W is given by
(vi ⊗ wj | i = 1 : m, j = 1 : n) (and hence dim(V ⊗W ) = dimV · dimW ).

In general, the map g : V1 × . . .× Vd → V1 ⊗ . . .⊗ Vd is not surjective, i.e. there are
tensors which are not decomposable.

Coordinates description. Let V ' Km and W ' Kn with basis (v1, . . . , vm) and
(w1, . . . , wn) respectively. Let T ∈ V ⊗ W be a tensor. Then we can write T with
respect to the basis (vi ⊗ wj | i, j):

T =
∑
i,j

Tijvi ⊗ wj

where Tij ∈ K, hence we may look at T as a matrix (Tij) of size m×n with coefficients
in K. This lead to a first identification of the tensor product as

V ⊗W 'Mm×n(K)

Another way to look at the tensor T is as a K-homomorphism ϕT : V ∨ →W defined
as follows: given (v1, . . . , vm) the K-basis of V ∨ dual to the basis (v1, . . . , vm), we
consider

ϕT (vk) =
∑
i,j

Tijv
k(vi)wj =

∑
j

Tkjwj
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Then

ϕT ·
[
v1 | . . . | vm

]
=


T11 . . . Tm1
...

. . .
...

T1n . . . Tmn

 = tT

Similarly we may look at T as tϕT : W∨ → V and we have tϕT ·
[
w1 | . . . | wn

]
= T .

This other interpretation leads us to a second identification of the tensor product as

V ⊗W ' HomK(V ∨,W )

Obviously these identifications hold for tensor products of three or more spaces too.

Flattenings. Let V ' Km and W ' Kn. We recall that V ⊗W ' Mm×n(K) and
through this identification a tensor T ∈ V ⊗W can be seen as a m×n matrix T = (Tij).
By vectorizing matrices we obtain the identification Mm×n(K) ' Kmn, so we can look
at a tensor T ∈ V ⊗W as a vector

vect(T ) = t
[
T11, T21, . . . , Tm1, T12, . . . , Tm2, T13, . . . , Tm(n−1), T1n, . . . , Tmn

]
The tensor products of two spaces are in some sense poorer than the tensor products

of three or more spaces because the more spaces the more the identifications we may
consider.
For example, let U, V,W be K-vector spaces of dimension m,n, p respectively and let
(ui), (vj), (wk) be basis respectively. Then by associativity, with respect to these basis,
we may identify

(U ⊗ V )⊗W 'Mmn×p(K) ' Hom((U ⊗ V )∨,W )
U ⊗ (V ⊗W ) 'Mm×np(K) ' Hom(U∨, (V ⊗W ))
(U ⊗W )⊗ V 'Mmp×n(K) ' Hom((U ⊗W )∨, V )

These different identifications lead to different expressions of a tensor T ∈ U ⊗ V ⊗W :
for example if we consider T ∈ (U ⊗ V )⊗W then we can write it with respect to the
above basis as

T =
∑
k

(∑
i,j

Tijkui ⊗ vj
)
⊗ wk

or we can look at it in Hom((U ⊗ V )∨,W ) as

T (us ⊗ vt) =
∑
i,j,k

Tijk
(
(us ⊗ vt)(ui ⊗ vj)

)
wk =

∑
k

Tstkwk ∈W

We may think at T ∈ U⊗V ⊗W as a 3-dimensional matrix (Tijk) (a cube-matrix): in
this perspective, by choosing a different identification of the tensor product U ⊗V ⊗W
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we choose a different face of the cube-matrix (Tijk), then we may vectorize this cube-
matrix with respect to one of these faces and obtain a 2-dimensional matrix (a flat-
matrix). The idea is just the same as vectorizing a flat-matrix: we choose a side of the
matrix, for istance the first column, and we queue the other columns at the end of the
first one. We just gave the (quite intuitive) geometric idea of the following definition.

Definition. Let T ∈ U ⊗ V ⊗W be a tensor with coordinate (Tijk) with respect to a
given basis. The flattening of T with respect to W is the block-matrix

TW =
[
T·,1,·

∣∣∣ . . . ∣∣∣ T·,n,·] ∈Mp×nm(K)

where

T·,j,· =


T1j1 . . . Tmj1
...

. . .
...

T1jp . . . Tmjp

 ∈Mp×m(K)

Similarly we define the flattenings of T with respect to U and V respectively as

TU =
[
T·,·,1

∣∣∣ . . . ∣∣∣ T·,·,p] ∈Mm×pn(K) , T·,·,k =


T11k . . . T1nk
...

. . .
...

Tm1k . . . Tmnk

 ∈Mm×n(K)

TV =
[
T1,·,·

∣∣∣ . . . ∣∣∣ Tm,·,·] ∈Mn×mp(K) , Ti,·,· =


Ti11 . . . Ti1p
...

. . .
...

Tin1 . . . Tinp

 ∈Mn×p(K)

Faithfully to the intuitive geometric interpretation of the tensor T as cube-matrix, the
submatrices

Ti,·,· : V ∨ →W , T·,j,· : W∨ → U , T·,·,k : U∨ → V

are said slices of the tensor.

Example 1.2.2. Consider U ' V ' W ' K2 with basis (u1, u2), (v1, v2), (w1, w2)
respectively. Consider the tensor

T = u1 ⊗ v1 ⊗ w1 + u2 ⊗ v2 ⊗ w1 (∈ U ⊗ V ⊗W )

Then its flattenings are

TU =
[
T·,·,1

∣∣∣ T·,·,2] =
[
1 0 | 0 0
0 1 | 0 0

]

TV =
[
T1,·,·

∣∣∣ T2,·,·
]

=
[
1 0 | 0 0
0 0 | 1 0

]

TW =
[
T·,1,·

∣∣∣ T·,2,·] =
[
1 0 | 0 1
0 0 | 0 0

]
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1.3 Symmetric tensors

Let V be a m-dimensional K-vector space and let V ⊗d be the tensor product of d copies
of V : then V ⊗d has dimension md and, given (v1, . . . , vm) a basis of V , (vi1 ⊗ . . . ⊗
vid | ij ∈ {1, . . . ,m}) is a basis of V ⊗d. Then a tensor T ∈ V ⊗d can be written as

T =
∑

ij∈{1,...,m}
Ti1...id(vi1 ⊗ . . .⊗ vid)

The symmetric group Sd acts linearly on V ⊗d: the action is defined on the decompos-
able tensors as follows

∀σ ∈ Sd, σ · (v1 ⊗ . . .⊗ vd) = vσ(1) ⊗ . . .⊗ vσ(d)

and extended to the whole tensor space by linearity. In particular, Sd permutes the
decomposable tensors, hence V ⊗d is a Sd-module.

Definition. A tensor T ∈ V ⊗d is symmetric if

∀σ ∈ Sd , Ti1...id = Tσ(i1)...σ(id)

Note: If T is a symmetric tensor, we may look at its coordinates Ti1...id as coefficients
of a homogeneous polynomial of degree d in m variables. This perpective will be very
useful when we will work with projective spaces.

We denote with
Symd V = {T ∈ V ⊗d | T symmetric}

the subspace of all symmetric tensors, i.e. the subspace of Sd-invariant tensors: it is
generated by {v⊗d | v ∈ V } since

∀σ ∈ Sd, σ · (v1 ⊗ . . .⊗ vd) = vσ(1) ⊗ . . .⊗ vσ(d) ⇐⇒ v1 = . . . = vd

A monomial basis for Symd V is (xi1 · . . . · xid | i1, . . . , id) where

xi1 · . . . · xid = 1
d!
∑
σ∈Sd

vσ(i1) ⊗ . . .⊗ vσ(id)

hence
dimK Symd V =

(
n+ d− 1

d

)

The above basis makes explicit the isomorphism of Symd(V ) with the space of the
degree-d homogeneous polynomials on V (however the isomorphism is independent
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from the basis). Moreover, with respect to this basis the coordinates of a symmetric
tensor T ∈ Symd V are often denoted with

T(i1,...,id) = 1
d!
∑
σ∈Sd

Tσ(i1)...σ(id)

Fact 1.3.1. Decomposable symmetric tensors {v⊗d | v ∈ V } correspond to d-powers
of linear forms (α1x1 + . . .+ αmxm)d on V ∨ (where dimV = m).

Note: To be honest we are cheating a little bit since we are identifying the symmetric
algebra of degree d on V (properly denoted Symd V ) with the symmetric tensors. But
we are fully allowed to do this since in characteristic 0 they can be identified through
the map

Symd V −→ {symmetric tensors}
vi1 · . . . · vid 7→ 1

d!
∑
σ∈Sd vσ(i1) ⊗ . . .⊗ vσ(id)
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Chapter 2

Kronecker form of matrix pencils

In this chapter we study the decomposition of matrix pencils. In the first sec-
tions we introduce the notion of strict equivalence and we find out the Kro-
necker canonical form: to do so we first classify the so-called regular pencils,
then the singular ones. In the last sections we focus on the symmetric pencils
by exhibiting a symmetric Kronecker canonical form both over C and R.

Let K be a field with characteristic 0, not necessarily algebraically closed.

2.1 Strict equivalence of pencils

Definition. A matrix pencil is a binomial of the form A(λ) = A0 + λA1 whose
coefficients are matrices.

Equivalently a matrix pencil is a λ-matrix of degree 1 with respect to the variable
λ. We denote by Mm×n(K[λ]1) the set of matrix pencils of size m × n. Consider the
group action

GLm(K)×GLn(K) −→ Aut
(
Mm×n(K[λ]1)

)
(P,Q) 7→

(
A(λ) 7→ P ·A(λ) ·tQ

) (2.1)

Definition. Two (matrix) pencils A(λ) and B(λ) are said to be strictly equivalent
if they are in the same orbit with respect to the above group action.

We fix the notations
A(λ) λ∼ B(λ) , A(λ) ◦∼ B(λ)

for λ-equivalence and strict equivalence respectively.
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We observe that λ-equivalence and strict equivalence differ in the dependence (or not)
of the transformation matrices on the variable λ. Actually when the pencils are square
these equivalences are somehow linked, but before showing this we share a preliminary
useful lemma.

Lemma 2.1.1 (Generalized Euclidean Division). Let R be a ring, not necessarily
commutative, let f(x), g(x) ∈ R[x] be polynomials of degree n,m (respectively) with
coefficients in R such that n ≥ m and the leading coefficients gm of g is invertible (i.e.
gm ∈ R×). Then there exist p(x), q(x), r(x), s(x) ∈ R[x] polynomials such that:

• (left-division of f by g) f(x) = g(x)p(x) + r(x);

• (right-division of f by g) f(x) = q(x)g(x) + s(x);

• deg(r),deg(s) < deg(g).

Proof. Before proceeding with the proof we note that the notion “degree” is the one
induced by the graded structure of the R-module R[x]. This enable us to work even if
we are not in an euclidean domain.
We only prove the right-division (the left one is analogous) and we do so in an algo-
rithmic way.
Let f(x) = fnx

n+ . . . f0 and g(x) = gmx
m+ . . . g0. Since gm ∈ R× we can left-multiply

g(x) by fng−1
m xn−m and subtract the result to f(x): we obtain

f̃ (1)(x) = f(x)− fng−1
m xn−m · g(x) = f̃n−1x

n−1 + · · ·+ f̃0

for suitable f̃i ∈ R, with deg(f̃ (1)) ≤ n− 1. We can repeat the right-division by g(x) to
f̃ (1) and obtain f̃ (2)(x) of degree ≤ n − 2. We iterate the right-division by g(x) until
we have deg(f̃ (k)) < m. So this algorithm returns

f(x) = f̃ (k−1)(x) · g(x) + f̃ (k)(x) , deg(f̃ (k)) < deg(g)

We note that at each iteration we strongly use the fact that gm is a unit in R.
The same argument exactly holds for the left-division up to right-multiply g−1

m and the
whole divisor: for example in the first step we have

f̃ (1)(x) = f(x)− g(x) · g−1
m fnx

n−m

Proposition 2.1.2. Let A0 + λA1 and B0 + λB1 be two square matrix pencils of size
m with detA1, detB1 6= 0. If they are λ-equivalent, then they are strictly equivalent.
Moreover, if P (λ) and Q(λ) are such that B0 + λB1 = P (λ) · (A0 + λA1) ·tQ(λ), then
the matrices P and Q such that B0 + λB1 = P · (A0 + λA1) ·tQ are obtained as left
and right remainders respectively of P (λ) and Q(λ) in the division by B0 + λB1.
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Proof. Let P (λ) and Q(λ) be such that B0 + λB1 = P (λ) · (A0 + λA1) ·tQ(λ). Let
P (λ)−1 be the inverse of P (λ). Then

P (λ)−1 · (B0 + λB1) = (A0 + λA1) ·tQ(λ)

By regarding P (λ)−1 and tQ(λ) as matrix polynomials, since detA1, detB1 6= 0 (i.e.
A1, B1 ∈ GLm(K) = Mm(K)×) we can apply the previous lemma and divide this two
matrix polynomials respectively by A0 +λA1 (on the left) and B0 +λB1 (on the right):

P (λ)−1 = (A0 + λA1) · S(λ) +R , tQ(λ) = T (λ) · (B0 + λB1) +tQ

where R,tQ are constant matrices of size m. Hence(
(A0 + λA1) · S(λ) +R

)
· (B0 + λB1) = (A0 + λA1) ·

(
T (λ) · (B0 + λB1) +tQ

)
⇐⇒

⇐⇒ (A0 + λA1) ·
(
T (λ)− S(λ)

)
· (B0 + λB1) = R · (B0 + λB1)− (A0 + λA1) ·tQ

By comparing the degrees of the two sides as matrix polynomials, since A1 and B1 are
units (so there is no zero-divisor in the equation) it follows that T (λ)− S(λ) = 0 and

R · (B0 + λB1) = (A0 + λA1) ·tQ

Thus it is enough to prove that R is non-singular: in this case we have P = R−1 and
such P and Q satisfy our claim.
To do so we divide P (λ) on the left by B0 + λB1 and we obtain

P (λ) = (B0 + λB1) · U(λ) + P

By substitution in the previous equalities, we have

I = P (λ)−1 · P (λ) =
(
(A0 + λA1) · S(λ) +R

)
·
(
(B0 + λB1) · U(λ) + P

)
=

= (A0 + λA1) ·
(
S(λ) · (B0 + λB1) · U(λ) +tQ · U(λ) + S(λ) · P

)
+R · P

and by degrees arguments (and since A1 is a unit) it necessarily follows that

S(λ) · (B0 + λB1) · U(λ) +tQ · U(λ) + S(λ) · P = 0 , RP = I

so P = R−1 is non-singular, hence B0 + λB1 = P · (A0 + λA1) ·tQ.
We conclude by noticing that even Q is non-singular since

B1 = P ·A1 ·tQ =⇒ detB1 = detP · detA1 · det tQ

and detB1, detA1 6= 0.
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In the preliminary chapter we exhibited a complete system of invariants for λ-
equivalence (given by invariant polynomials). Now our goal is to find a complete system
of invariants for strict equivalence: this would lead us to a canonical form for strict
equivalence, that is to a canonical representative of the classes in the group

GLm(K)�
Mm×n(K[λ]1)�GLn(K)

Note: It is kind to underline that the strict equivalence extends the notion of (left-right)
equivalence of matrices to matrix pencils.

We will reach our goal by steps and to do so we introduce the following definition.

Definition. A matrix pencil A+ λB of size m× n is said to be:

� regular if m = n and det(A+ λB) is a not-identically-zero polynomial;

� singular if m 6= n or det(A+ λB) is identically zero.

Note: For square pencils, since det(A+λB) = det(B)λm + · · ·+ det(A), it follows that
if the pencil is singular so are both A and B. Conversely, if A or B are non-singular,
the pencil is regular.

2.1.1 From affine to projective matrix pencils

Let A + λB be a matrix pencil, not necessarily square. We can homogenize it and
consider the homogeneous pencil µA + λB. By repeating the construction of the in-
variant polynomials we did in the last section, we consider the (homogeneous) greatest
common divisors gj(µ, λ) of all the minors of order j of the matrix µA+λB and obtain
the (homogeneous) invariant polynomials

ij(µ, λ) = gr−j+1(µ, λ)
gr−j(µ, λ) for j = 1 : r

Here again K[µ, λ] is UFD, thus we can factorize the invariant polynomials as powers
of homogeneous irreducible factors over K and obtain the elementary divisors eα(µ, λ)
of the pencil µA+ λB over K.

We observe that by setting µ = 1 we go back to the definitions we have given in the
last section for a pencil of the form A+λB and from each eα(µ, λ) we obtain an elemen-
tary divisor eα(1, λ) = ϕα(λ)cα . Conversely, from each elementary divisor ϕj(λ)cj of
the pencil A+λB we can obtain an elementary divisor of µA+λB by homogenization
eα(µ, λ) = µγϕj(λµ)cj .

In this way we obtain all the elementary divisors of µA+ λB except the ones of the
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form µq: unfortunately this exception comes out from the fact that in general to deho-
mogenize and re-homogenize a polynomial gives not the identity on that polynomial.
Nevertheless we will see that to dehomogenize and re-homogenize a matrix pencil gives
right back the pencil we started from since we are just looking at a linear polynomial
of the form xa+ by.

In particular, elementary divisors of µA+ λB of the form µq are called infinite ele-
mentary divisors of A+λB and, for square pencils, they exist if and only if detB = 0:
indeed

µq is an elementary divisor of µA+ λB ⇐⇒

⇐⇒ 1 is an invariant polynomial of A+ λB ⇐⇒

⇐⇒ the Smith form of A+ λB is of the form diag(1, C + λD) ⇐⇒

⇐⇒ the Smith form of B is (up to permutation) of the form diag(0, ∗) ⇐⇒

⇐⇒ detB = 0

Note: In a geometric flavoured perspective, we may say that in the last section we just
worked in the affine chart {µ 6= 0} of a projective space and what we missed were just
the informations at the infinity {µ = 0}. This perspective is very useful because by
considering a pencil of the form µA + λB we are in fact considering a projective line
parameterized by [µ : λ] ∈ P1

K and defined by the two matrices A and B. Thus we
are gratefully allowed to choose the generators A and B on this line as conveniently as
we need. We may (and will) refer to the homogeneous pencils as projective and to the
other ones as affine.

Since we obtain a homogeneous pencil by homogenizing an affine one, it follows:

Proposition 2.1.3. A0 + λA1 and B0 + λB1 are strictly equivalent so µA0 + λA1
and µB0 + λB1 are. In particular, if two pencils are strictly equivalent, then their
elementary divisors (both finite and infinite ones) must coincide.

In general the elementary divisors are not enough to give a complete system of in-
variants of strict equivalence. Now it is important to distinguish between regular and
singular pencils.

2.2 Canonical form for regular pencils

Let us now see that for regular pencils the converse to proposition 2.1.3 holds too.
Let A0 + λA1 and B0 + λB1 be two regular pencils of size m with same elementary

divisors, both finite and infinite ones. Now we show that the homogenized pencils are
strictly equivalent too.
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Given µA0 + λA1 and µB0 + λB1 their homogenizations, we consider the parameters
transformation [

a1 a2
b1 b2

] [
λ̃

µ̃

]
=
[
λ

µ

]
where a1b2 − a2b1 6= 0. We write the pencils with respect to the new parameters:

µA0 + λA1 = µ̃(b2A0 + a2A1) + λ̃(b1A0 + a1A1) = µ̃Ã0 + λ̃Ã1

µB0 + λB1 = µ̃(b2B0 + a2B1) + λ̃(b1B0 + a1B1) = µ̃B̃0 + λ̃B̃1

Since µA0+λA1 and µB0+λB1 are regular, we can choose a1, b1 such that det Ã1, det B̃1 6=
0. Hence we are in the case where λ-equivalence and strict equivalence coincide, so
µ̃Ã0 + λ̃Ã1 and µ̃B̃0 + λ̃B̃1 are strictly equivalent, so µA0 + λA1 and µB0 + λB1 too.

We just proved the following result which answers our main problem in the case of
regular pencils.

Theorem 2.2.1. Two regular pencils A0 + λA1 and B0 + λB1 are strictly equivalent
if and only if their homogenized pencils µA0 + λA1 and µB0 + λB1 have the same
elementary divisors.

Next we determine the canonical form of the strictly equivalence classes for regular
pencils. Given a regular pencil A + λB, since det(A + λB) is not identically zero
there exists c ∈ K such that det(A+ cB) 6= 0. By setting A1 = A+ cB we rewrite the
pencil

A+ λB = A1 + (λ− c)B

with detA1 6= 0, thus by left-multiplication for A−1
1 we obtain

I + (λ− c)A−1
1 B

Let J = diag(J0, J1) be the Jordan form of A−1
1 B where J0 is the nilpotent block

(i.e. with all zero eigenvalues) and J1 is the non-singular block (i.e. with all non-zero
eigenvalues): then the pencil I + (λ− c)A−1

1 B is similar to the pencil

I + (λ− c)
[
J0 0
0 J1

]
=
[
I + (λ− c)J0 0

0 I + (λ− c)J1

]

Now we separately work on the two blocks.

� By multiplying for diag((I − cJ0)−1, I) we obtain[
I + λ(I − cJ0)−1J0 0

0 I + (λ− c)J1

]
(2.2)
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We observe that (I − cJ0)−1J0 is nilpotent: indeed, if J0 has nilpotence index h,

(I − cJ0)−1 = I + cJ0 + . . .+ (cJ0)h + . . .
Jh0 =0

= I + cJ0 + . . .+ (cJ0)h−1

and (I − cJ0)−1J0 = J0 + cJ2
0 + . . .+ ch−1Jh0 , which is nilpotent.

Thus, if Ĵ0 is the nilpotent Jordan form of (I − cJ0)−1J0, it follows that (2.2) is
similar to the block-diagonal pencil

[
I + λĴ0

I + (λ− c)J1

]
=


N (u1)

. . .

N (us)

I + (λ− c)J1

 (2.3)

where N (ui) is a block of size ui × ui of the form

N (ui) =


1 λ

. . .
. . .

. . . λ

1

 (2.4)

� Since det J1 6= 0 we may multiply (2.3) for diag(I, J−1
1 ) and obtain[

diag(N (u1) . . . N (us))
(J−1

1 − cI) + λI

]

and, if we set Ĵ1 for the Jordan form of (J−1
1 − cI), we obtain the similar pencil[

diag(N (u1) . . . N (us))
Ĵ1 + λI

]
(2.5)

Next we want to find a canonical decomposition for the block Ĵ1 + λI too. One
may propose to explicit the Jordan form Ĵ1 but that would depend on the field K we
are working over. Instead we are looking for a canonical form independently from the
base field. To reach this we need to introduce new “canonical” blocks but first it is
convenient to put ourselves in the homogeneous case.

Remark 2.2.2. Previously we remarked that to dehomogenize and re-homogenize a
homogeneous matrix pencil gives back the homogeneous pencil we started from. One
may wonder if to dehomogenize would give problems with respect to the elementary
divisors since we lost informations on the multiplicity of the infinite divisors. However,
from the point of view of the canonical form, these informations are kept hidden in the
dimensions of the diagonal blocks. Thus it follows that by homogenizing the canonical
form of the affine pencil we just obtain the canonical form of the projective one.
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By homogenizing the (affine) blocks N (ui) in (2.4) we obtain the (projective) blocks
of size ui × ui

H(ui) =


µ λ

. . .
. . .

. . . λ

µ

 (2.6)

To lighten up the notation it is also convenient to introduce the next definition.

Definition. Let M,N be two matrix of size m1 ×m2 and n1 × n2 respectively (not
necessarily of the same size). We define the block-direct sum of M and N the
((m1 + n1)× (m2 + n2))-matrix

M �N =
[
M 0
0 N

]

Thus by homogeneizing the matrix in (2.5) we can rewrite it as(
s

�
k=1

H(uk)
)
� (µĴ1 + λI)

Let us introduce new canonical blocks. Let p(t) ∈ K[t] be a monic polynomial of the
form

p(t) = tn + pn−1t
n−1 + . . .+ p0

and let a ∈ K. We define:

• Cp the companion matrix of p(t), i.e. the square matrix of size n of the form

Cp =


0 1

0 1
. . .

. . .

0 1
−p0 −p1 . . . −pn−2 −pn−1


• Fp the Frobenius companion block (or simply Frobenius block) of p(t), i.e. the

square pencil of size n of the form

Fp = µCp + λIn =


λ µ

λ µ
. . .

. . .

λ µ

−µp0 −µp1 . . . −µpn−2 λ− µpn−1


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• Jn,a the Jordan block of size n with respect to the eigenvalue a, i.e.

Jn,a =


a 1

a
. . .

. . . 1
a


• Jn,a the Jordan block of size n with respect to (λ+ aµ)n, i.e.

Jn,a = µJn,a + λIn =


λ+ aµ µ

λ+ aµ
. . .

. . . µ

λ+ aµ



Let µA+ λB be a projective pencil of rank r with invariant polynomials

ij(µ, λ) = gr−j+1(µ, λ)
gr−j(µ, λ) for j = 1 : r , ir(µ, λ) | ir−1(µ, λ) | . . . | i1(µ, λ)

We factorize them as

ij(µ, λ) = µuj ·
rj∏
k=1

(
p

(j)
k (µ, λ)

)wk
where uj ≥ 0, wj ≥ 0 and p(j)

k (1, λ) is irreducible in K[λ] of degree > 0. The polynomials
µuj are the infinite elementary divisors of the affine pencil A+λB and the polynomials(
p

(j)
k (1, λ)

)wk
are the finite elementary divisors of A+ λB.

If µA+ λB is regular of size m, then det(µA+ λB) = ∏
j=1:m ij(µ, λ). In particular,

we recall that:

• detB is the leading coefficient with respect to λ of det(µA+ λB), i.e.

det(µA+ λB) = detB · λm +D(µ, λ) where degλ(D) < m

• µA+ λB does not have elementary divisors of the form µuj ⇐⇒ detB 6= 0.

Proposition 2.2.3. Let p(t) = tn + pn−1t
n−1 + . . . + p0 be a polynomial in K[t] and

let a ∈ K. Let Fp and Jn,a be the pencils defined above. Then:

(i) The only invariant polynomial of Fp is

(−1)nµnp(−λ
µ

) = λn +
n−1∑
i=0

(−1)n−ipiλiµn−i
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(ii) The only invariant polynomial of Jn,a is

(λ+ aµ)n

Proof. The above polynomials are the determinants of the respective pencils, so it is
enough to prove that the greatest common divisors of the minors of size less than n are
all equal to 1.

(i) In Fp for all k < n there are the minors µk and λk which are coprime.

(ii) In Jn,a for all k < n there are the minors (λ+ aµ)k and µk which are coprime.

Since we are interested in the block µĴ1 + λI, we now assume µA + λB regular with
detB 6= 0, hence there are not infinite elementary divisors, hence µA+λB

◦∼ µĴ1 +λI.

Let
(
p

(j)
k (1, λ)

)wk
be a finite elementary divisor of A + λB and let qjk(t) be the

polynomial defined by

qjk(t) = (−1)wk deg(p(j)
k

)
(
p

(j)
k (1,−t)

)wk
By proposition 2.2.3 the only invariant polynomial of Fqjk is

(
p

(j)
k (µ, λ)

)wk
: actually

this is the only elementary divisor of the Frobenius block since p(j)
k (1, λ) is irreducible.

Remark 2.2.4. With abuse of notation we will write F(p(j)
k

)wk instead of Fqjk to keep
in mind its elementary divisor.

Thus the Frobenius block of qjk(t) is

F(p(j)
k

)wk = µCqjk + λI =


λ µ

λ µ
. . .

. . .

λ µ

(−1)njkµp̃0 (−1)njk+1µp̃1 . . . µp̃njk−2 λ− µp̃nkj−1


where p̃i are the coefficients of (p(j)

k (1, λ))wk and nkj = wk deg(p(j)
k ) its degree. Then

�
j,k

F(p(j)
k

)wk =�
j,k

(µCqjk + λI) = µ
(
�
j,k

Cqjk

)
+ λI

Since the elementary divisors are a complete system of invariants of strict equivalence
for regular pencils, it follows that

µA+ λB
◦∼ µĴ1 + λI

◦∼�
j,k

F(p(j)
k

)wk
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This completes the classification for regular pencils. In the following we state the
same result in two different ways: first by exhibiting the Kronecker form as a diagonal-
block matrix, then as a (more compact) block-direct-sum.

Remark 2.2.5. We state the two theorems in terms of projective regular pencils:
clearly they hold for affine ones too and it is enough to dehomogenize the canonical
forms with respect to the variable µ, i.e. by setting µ = 1.

Theorem 2.2.6 (Kronecker - regular form). Every regular projective pencil µA+ λB

is strictly equivalent to a canonical regular projective pencil of the form
diag

(
H(u1) . . . H(us)

)
diag

({
F(p(j)

k
)wk | j, k

})
 (2.7)

where the first s blocks H(ui) are uniquely defined by the elementary divisors µu1 . . . µus

and the Frobenius blocks F(p(j)
k

)wk are uniquely determined by the other elementary

divisors {(p(j)
k )wk | j, k}.

Theorem 2.2.7 (Weierstrass - regular form). Every projective pencil µA + λB is
strictly equivalent to the canonical block-direct-sum(

s

�
k=1

H(uk)
)
�

(
�
l,z

F(p(l)
z )wz

)
(2.8)

where the blocks H(uk) are uniquely determined by the elementary divisors of the form
µu1 . . . µus and the blocks F(p(l)

z )wz are uniquely determined by the elementary divisors

of the form (p(l)
z (µ, λ))wz .

Note: We will indistinctly refer to both the above canonical forms as to the Kronecker
form, Weierstrass form or even Kronecker-Weierstrass form.

2.2.1 Jordan blocks and GL2(K)-action

Before concluding this section we emphasyze two interesting facts. Previously we as-
sumed that the pencil µA+λB was regular with detB 6= 0, so it did not have elementary
divisors of the form µui .

Decomposition with respect to invariant polynomials. Consider ij(µ, λ) the
j-th invariant polynomial of µA+ λB and factorize it as

ij(µ, λ) =
rj∏
k=1

(
p

(j)
k (µ, λ)

)wk
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where p(j)
k (1, λ) are irreducible in K[λ] of degree > 0 and their powers

(
p

(j)
k (µ, λ)

)wk
are (some of the) elementary divisors of µA+ λB.

Proposition 2.2.8. In the above assumptions,

Fij
◦∼�

k

F(p(j)
k

)wk

Proof. Before proceeding we underline that Fij is not the Frobenius block of ij(1, λ)
but the one whose invariant polynomial is ij(µ, λ) (same notation we fixed for F(p(j)

k
)wk ).

Since the elementary divisors give a complete system of invariants of strict equivalence
for regular pencils, it is enough to show that the ones of the two pencils coincide.
The pencil Fij has (one and only) invariant polynomial ij(µ, λ), thus its elementary
divisors are

{(
p

(j)
k (µ, λ)

)wk}
k
. Each block F(p(j)

k
)wk has (one and only) invariant poly-

nomial
(
p

(j)
k (µ, λ)

)wk
which is also its only one elementary divisor. From the fact 1.1.3

it follows that the pencil �k F(p(j)
k

)wk has elementary divisors
{(
p

(j)
k (µ, λ)

)wk}
k
, thus

the thesis.

This propostition gives us the perfect assist to our first goal:

Corollary 2.2.9. Let µA+ λB be a regular pencil with detB 6= 0. Then it is strictly
equivalent to the block-direct-sum of the Frobenius blocks of its invariant polynomials,
i.e.

µA+ λB
◦∼�

j

Fij

Obviously the above decomposition is less fine than the one in Frobenius blocks of the
elementary divisors. But it gains interest if the pencil has only one invariant polynomial
(which factorizes in all the elementary divisors of the pencil) since it means that such
pencil is strictly equivalent to the Frobenius block of one only polynomial. But there
is more than this to unveil: in such case this polynomial is right the determinant of the
pencil, i.e.

µA+ λB
◦∼ Fdet(µA+λB)

Remark 2.2.10. In general we cannot cluster the block-direct-sum �jFij in one Frobe-
nius block: we can do so only if the invariant polynomials ij(µ, λ) are coprimes but
by their divisibility property this is equivalent to say that there is only one invariant
polynomial (i.e. i2 = . . . ir = 1).
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Jordan blocks. The next interesting fact we want to emphasyze concerns the Jordan
block with respect to (λ+ aµ)n, i.e.

Jn,a = µJn,a + λIn =


λ+ aµ µ

λ+ aµ
. . .

. . . µ

λ+ aµ

 (2.9)

In particular we want to express some addends in the block-direct-sum of the Kronecker
form as Jordan block. Before going on we remark that in general we are not working over
an algebraically closed field, hence irreducible polynomials (in particular the elementary
divisors) may have degree greater than 1.

Let
(
p(µ, λ)

)n
be an elementary divisor of the regular pencil µA + λB and let us

assume p(µ, λ) to be linear, i.e. (
p(µ, λ)

)n
= (λ+ aµ)n

(of course we can always assume the polynomial to be monic in λ up to multiplication
by a unit). Let q(t) be the polynomial defined by

q(t) = (−1)n
(
p(1,−t)

)m
= (−1)n(−t+ a)n

Then the Frobenius block Fpn of q(t) has invariant polynomial
(
p(µ, λ)

)n
= (λ+ aµ)n

and it is the only one. But this is the same (only one) invariant polynomial of the
Jordan block with respect to (λ + aµ)n. Since such invariant polynomial is also the
only one elementary divisor of each of the two blocks, it follows that:

Proposition 2.2.11. The Frobenius block corresponding to an elementary divisor of
the form (λ+ aµ)n is strictly equivalent to the related Jordan block, i.e.

F(λ+aµ)n
◦∼ Jn,a

Thus the next result is just a corollary of what we found out.

Theorem 2.2.12. Every regular pencil µA+ λB with detB 6= 0 is strictly equivalent
to the block-direct-sum of:

• the Jordan blocks Jwk,ajk with respect to its completely-factorized elementary
divisors (λ+ ajkµ)wk);

• the Frobenius blocks F(p(j)
k

)wk corresponding to the remaining elementary divisors.
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In particular, if K is algebraically closed, the Kronecker-Weierstrass form is block-
direct-sum of only Jordan blocks

µA+ λB
◦∼�

j,k

Jwjk,ajk

uniquely determined by the elementary divisors (λ+ ajkµ)wjk .

GL2(K)-action. We conclude the section with a simple remark. Above we did the
strong assumption that detB 6= 0 in the regular pencil µA+λB: we did so because we
were interested in the last block µĴ1 + λI.
Obviously not every regular pencil has such property, but we can always trace back to
that case.

Proposition 2.2.13. Let µA + λB be a regular pencil. Then there exists a linear
transformation over K2 for which the same pencil can be rewritten as µ̃Ã + λ̃B̃ with
det B̃ 6= 0.

Proof. We are looking for a linear transformation of the form[
a b

c d

] [
µ̃

λ̃

]
=
[
µ

λ

]

with ad−bc 6= 0 (i.e. invertible) such that the pencil µA+λB = µ̃(aA+cB)+λ̃(bA+dB)
has det(bA+ dB) 6= 0. Since the linear systemad− bc = 0

det(bA+ dB) = 0

has a finite number of solutions and K is infinite, it follows that a linear trasformation
satisfying our requests exists.

This remark gains more interest if we look at the pencil µA + λB has a projective
line: what we did was just to change the points at the infinity of the line, that is the
infinite elemetary divisors µui of A+λB become finite elementary divisors of µ̃Ã+ λ̃B̃.

Let us denote with Mm×n(K[µ, λ]1) the space of the projective pencils of size m×n.
In this chapter we just considered the action of GLm(K)×GLn(K) on Mm×n(K[µ, λ]1).
What we are doing now is to extend the acting group to GL2(K)×GLm(K)×GLn(K)
as follows:

GL2(K)×GLm(K)×GLn(K) −→ Aut
(
Mm×n(K[µ, λ]1)

)
([a b

c d

]
, P,Q

)
7→

(
µA+ λB 7→ µ̃(P ·A ·tQ) + λ̃(P ·B ·tQ)

)
(2.10)
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where [
a b

c d

] [
µ

λ

]
=
[
µ̃

λ̃

]
In this new perspective the strict equivalence is traduced in the action of the triples
(I2, P,Q) (where I2 is the identity matrix of size 2). Later we will introduce a new
equivalence defined by the orbits of this new group action.

2.3 Canonical form for singular pencils

Let A + λB be a singular pencil of size m × n. Since it is singular, Rk(A + λB) <
min{m,n}: say Rk(A+ λB) < n. Hence its columns are linearly dependent over K[λ],
hence there exists x(λ) ∈ (K[λ])n \ {0} such that (A+ λB)x(λ) = 0. Consider

ε = min
{

deg x(λ) | x(λ) ∈ ker(A+ λB) \ {0}
}

and x(λ) = x0 − x1λ+ . . .+ (−1)εxελε, where xi ∈ Kn and xε 6= 0.
Since x(λ) ∈ ker(A+ λB) 

Ax0 = 0
Bxk−1 −Axk = 0 ∀k = 1 : ε
Bxε = 0

(2.11)

Such system may be represented by

Mε



x0
−x1
...

(−1)ε−1xε−1
(−1)εxε


=



A

B A

B
.. .

. . . A

B





x0
−x1
...

(−1)ε−1xε−1
(−1)εxε


= 0 (2.12)

where Mε is a block-matrix of size (ε+ 2)× (ε+ 1) with blocks of size m× n.
For all k = 0 : ε let Mk be the submatrix of Mε given by the first k+ 2 block-rows and
k + 1 block-columns and let ρk = RkMk: surely ρε < (ε+ 1)n and by minimality of ε

ρ0 = Rk

A
B

 = n

ρk = (k + 1)m ∀k = 1 : ε− 1

Thus
ε = min{k | ρk � (k + 1)n}
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Note: Let rA, rB, r be respectively the ranks of A,B,A+ λB. If ε = 0, then we have
a linear dependence over K (and not just over K[λ]) for the columns of A + λB, and
for the identity principle of polynomials we have a linear dependence over K for A and
B. Thus in this case rA, rB � n.

Our goal is to determine a canonical form of strict equivalence for singular pen-
cils, just as we did for the regular case. The main idea is to iteratively split a singular
pencil into “subpencils” until one of them is regular. A first step in the good direction
is given by the following result [14, Ch.XII, Theorem 4].

Theorem 2.3.1. If the equation (A + λB)x(λ) = 0 has solution of minimum degree
ε > 0, then the pencil A+ λB is strictly equivalent to the pencil[

Lε 0
0 Ã+ λB̃

]

where the matrix

Lε =

λ 1
. . .

. . .

λ 1


has size ε×(ε+1) and Ã+λB̃ is such that every solution of the equation (Ã+λB̃)x(λ) = 0
has degree greater than ε.

Remark 2.3.2. Until now we have worked with the columns of the pencil but we may
repeat the same arguments by working with the rows of the pencil: it is enough to
left-multiply the pencil by a row left-solution of length m, or equivalently to study the
solution of the transposed pencil. Then the previous result still hold when working
with rows up to considering the transposed matrix pencil and this leads us to a block
of the form

tLη =


λ

1 . . .

. . . λ

1


of size (η + 1)× η.

Now we analyze two cases: in the previous notations, first we assume ε 
 0 and so that
there is no constant linear dependence (i.e. independent from λ) neither for rows or
columns, then we admit the existence of such dependences.



2.3 Canonical form for singular pencils 27

Case 1: Let r < n be the rank of the pencil and let ε1 > 0 be the minimum degree
of the non-zero solutions of (A+ λB)x = 0. By theorem 2.3.1 it follows

A+ λB
◦∼
[
Lε1 0
0 A1 + λB1

]

where (A1 + λB1)x(1) = 0 has no solution of degree < ε1.
We may repeat the above argument and consider ε2 the minimum degree of the non-
zero solutions of (A1 +λB1)x(1) = 0: obviously 0 < ε1 ≤ ε2. By reapplying the theorem
we obtain

A1 + λB1
◦∼
[
Lε2 0
0 A2 + λB2

]
hence

A+ λB
◦∼

Lε1 Lε2
A2 + λB2


By iteration we have that

A+ λB
◦∼


Lε1

. . .

Lεp
Ap + λBp


where 0 < ε1 ≤ · · · ≤ εp and (Ap + λBp)x(p) = 0 has no non-zero solution, i.e. A+ λBp
has linearly independent columns.

Note: If ε1 + · · ·+ εp = m, then Ap + λBp is missing.

Now we focus on the rows of Ap + λBp. If they are linearly dependent, then the
same arguments (together with remark 2.3.2) lead us to

A+ λB
◦∼

diag(Lε1 . . . Lεp)
diag(tLη1 . . .

t Lηq)
A0 + λB0


where 0 < ε1 ≤ · · · ≤ εp, 0 < η1 ≤ · · · ≤ ηq and A0 +λB0 has linearly independent rows
and columns, i.e. A0 + λB0 is a regular pencil.

Remark 2.3.3. More precisely, the regular block A0 + λB0 has size(
m− (

p∑
i=1

εi +
q∑
j=1

ηj + q)
)
×
(
n− (

p∑
i=1

εi +
q∑
j=1

ηj + p)
)
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We note that A0 + λB0 is indeed a square pencil, since the dimension of the span of
linearly independent rows is always equal to the dimension of the span of the linearly
independent columns, hence in this case necessarily p and q are such that m−q = n−p.

Case 2: Let us assume that there are constant linear dependences of rows and/or
columns. We set

g = max{ number of independent constant solutions of (A+ λB)x = 0 }

h = max{ number of independent constant solutions of (tA+ λtB)x = 0 }

Let e1, . . . , eg ∈ Kn be linearly independent constant solutions of (A + λB)x = 0. We
extend them to basis of Kn and we rewrite the pencil with respect to the new basis:
we obtain the pencil

Ã+ λB̃ =
[

0m×g | Ã1 + λB̃1
]

In an analogous way by a basis change we may “annihilate” the first h rows of Ã1 +λB̃1
and obtain the pencil

Â+ λB̂ =
[

0h×g 0h×(n−g)
0(m−h)×g A0 + λB0

]
where the diagonal block A0 + λB0 has no constant linear dependences of rows and/or
columns, so we are again in Case 1. What we just obtained is (a part of) the canonical
form of a singular pencil:

0h×g
diag(Lεg+1 . . . Lεp)

diag(tLηh+1 . . .
t Lηq)

A0 + λB0

 (2.13)

where the last diagonal block is a regular pencil.

Note: We enumerated the diagonal blocks in the middle from g+ 1 to p and h+ 1 to q
respectively just to keep the notation similar to the previous case. Moreover, A0 +λB0
is actually a square pencil: we may have g 6= h but we must have m− q = n− p.

Minimal indices. Let x1(λ), . . . , xk(λ) ∈ (K[λ])n be solutions of (A+ λB)x(λ) = 0.
Such solutions are linearly dependent if the matrix X(λ) given by these vectors as
columns has rank less than k: in this case there exist p1(λ), . . . , pk(λ) ∈ K[λ] (not
all zero) such that p1(λ)x1(λ) + . . . + pk(λ)xk(λ) = 0. Else if the matrix X(λ) has
maximum rank k, such solutions are linearly independent.

Let x1(λ) 6= 0 be a solution of minimum degree ε1 and let x2(λ) 6= 0 be a solution
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of minimum degree ε2 among the solutions which are linearly independent with x1(λ).
By iterating we obtain

x1(λ) , . . . , xp(λ)

(where p ≤ n) with associated degrees 0 < ε1 ≤ . . . ≤ εp: such set of solutions is called
fundamental series of solutions.

In general such set is not uniquely determined by the pencil A+λB but the sequence
of degrees is so. This justifies the following good definition.

Definition. The minimal indices for columns of the pencil A+λB are the minima1

degrees of linearly independent solutions of the equation (A+ λB)x(λ) = 0.

Note: The solutions x1(λ), . . . , xp(λ) describes linear combinations of the columns of
A+ λB of degrees ε1, . . . , εp.

Definition. The minimal indices for rows of the pencil A + λB are the minima
degrees of linearly independent solutions of the equation (tA+ λtB)x(λ) = 0.

These minimal indices play a central role in the canonical form of singular pencil for
strict equivalence as we realize by the following result.

Proposition 2.3.4. The minimal indices both for columns and rows are an invariant
for strict equivalence, i.e. two strictly equivalent pencils have the same minimal indices.

Proof. Let A+λB and A′+λB′ be two strictly equivalent pencils and let P ∈ GLm(K)
and Q ∈ GLn(K) be such that

A′ + λB′ = P · (A+ λB) ·tQ

Since

(A+ λB)x(λ) = 0 P,Q∈GL⇐⇒ P · (A+ λB) ·tQ · (tQ)−1x(λ) = 0
⇐⇒ (A′ + λB′)((tQ)−1x(λ)) = 0

for each xk(λ) solution of (A + λB)x(λ) = 0 we have that yk(λ) = (tQ)−1xk(λ) is a
solution of (A′ + λB′)y(λ) = 0, and conversely.
Moreover, since (tQ)−1 does not depend on λ, xk(λ) and yk(λ) have the same degree.
It follows that A + λB and A′ + λB′ have the same minimal indices for columns. By
the same arguments on transposed matrices it follows that the minimal indices for rows
are the same too.

1plural of the latin term minimum
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Our next goal is to determine the minimal indices of the singular form

D(λ) =


0h×g

diag(Lεg+1 . . . Lεp
)

diag(tLηh+1 . . .
t Lηq )

A0 + λB0


where A0 + λB0 is a regular block.

Proposition 2.3.5. The complete system of minimal indices for columns (respectively
for rows) of the pencil D(λ) is given by the union of the systems of minimal indices for
columns (respectively for rows) of each diagonal block.

Proof. We analyze the simpler case of a matrix with two diagonal blocks

C(λ) =
[
A(λ) 0

0 B(λ)

]

Given x(λ) a solution with respect to C(λ), we can rewrite the vector as

x(λ) =
[
xA(λ)
xB(λ)

]

so that
C(λ)x(λ) =

[
A(λ)xA(λ)
B(λ)xB(λ)

]
hence C(λ)x(λ) = 0 ⇐⇒ A(λ)xA(λ) = B(λ)xB(λ) = 0.
If xA(λ) (resp. xB(λ)) is a solution with respect to A(λ) (resp. B(λ)) of minimum
degree εA (resp. εB), then

x(λ) =
[
xA(λ)

0

] (
resp. x(λ) =

[
0

xB(λ)

] )

is a solution with respect to C(λ), thus the smallest minimal index for columns for
C(λ) is ε ≤ εA (resp. ≤ εB), thus ε ≤ min{εA, εB}.
On the other end, if x(λ) is a solution with respect to C(λ) of minimum degree ε and

x(λ) =
[
xA(λ)
xB(λ)

]

we have ε = max{deg(xA),deg(xB)} and deg(xA) ≥ εA, deg(xB) ≥ εB, thus ε ≥
min{εA, εB}.

Now it only remains to determine the minimal indices of each block:
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• Obviously the regular block A0 + λB0 has no minimal index since the pencil is
regular;

• Equally obviously the zero block 0h×g has g zero minimal indices for columns and
h zero minimal indices for rows

ε1 = . . . = εg = η1 = . . . = ηh = 0

• For all i = g + 1 : p the blocks

Lεi =

λ 1
. . .

. . .

λ 1


of size εi× (εi + 1) have linearly independent rows, thus there is just one minimal
index for columns that is exactly εi.

• For j = h+ 1 : q the blocks

tLηj =


λ

1 . . .

. . . λ

1


of size (ηj + 1) × ηj have linearly independent columns, thus there is just one
minimal index for rows that is exactly ηj .

Theorem 2.3.6. The pencil

D(λ) =


0h×g

diag(Lεg+1 . . . Lεp)
diag(tLηh+1 . . .

t Lηq)
A0 + λB0


(where the block A0 + λB0 is regular) has minimal indices for columns ε1 = . . . = εg =
0 , εg+1, . . . , εp and minimal indices for rows η1 = . . . = ηh = 0 , ηh+1, . . . , ηq.

We recall that the elementary divisors (both finite and infinite ones) are a complete
system of invariants of strict equivalence for regular pencils. Moreover we have just
found out that minimal indices (for rows and columns) are a complete system of in-
variants of strict equivalence for the singular block of singular pencils (i.e. the diagonal
blocks except the regular one). Thus we have to expect that the minimal indices to-
gether with the elementary divisors give a complete system of invariants of strict equiv-
alence for singular pencils. By fact 1.1.3: the elementary divisors of a diagonal-block
matrix are given by the union of the ones of each block.
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Remark 2.3.7. It is worth resuming their relations with the size of a pencil of size
m × n. Let p and q be the number of the minimal indices for columns and rows
respectively: then 

m− q = n− p = ∑p
i=1 εi +∑q

j=1 ηj

p ≤ n
q ≤ m

(2.14)

where the last two inequalities hold since there are at most p (respectively q) indepen-
dent solutions in K[λ]n (respectively K[λ]m).

Remark 2.3.8. The blocks Lεi and tLηj have no elementary divisor: indeed they both
have a minor of size εi and ηj respectively equal to 1 and a minor of the same size equal
to λεi and ληj respectively. It follows that the set of elementary divisors of the pencil
D(λ) is given by the set of elementary divisors of the regular block A0 + λB0.

As for regular pencils, we want to reformulate what done so far in terms of projective
pencils. Let µA+ λB a singular projective pencil of size m× n. In the regular case we
noticed that we just need to homogenize the affine canonical form to obtain a projective
one and the same arguments still hold in the singular case. Consider the homogenized
blocks

Rεi
=

λ µ
. . .

. . .

λ µ

 , tRηj
=


λ

µ
. . .

. . . λ

µ



H(ui) =


µ λ

. . .
. . .

. . . λ

µ

 , F(p(j)
k

)wk
=


λ µ

. . .
. . .

λ µ

µ∗ µ∗ . . . µ∗ λ− µ∗


(2.15)

where the ∗’s are for suitable coefficients.
The same arguments we have done so far prove the following theorems.

Theorem 2.3.9 (Kronecker). Every projective pencil µA + λB is strictly equivalent
to a canonical pencil of the form

0h×g
diag

(
{Rεi}

p
i=g+1

)
diag

(
{tRηj}

q
j=h+1

)
diag

(
{H(uk)}sk=1

)
diag

({
F(p(z)

l
)wl

}
z,l

)


(2.16)
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where the blocks 0h×g, Rεi and tRηj are uniquely determined by the minimal indices
(for columns and rows) ε1 . . . εp, η1 . . . ηq, the blocks H(uk) are uniquely determined
by the elementary divisors µu1 . . . µus and the Frobenius blocks F(p(z)

l
)wl are uniquely

determined by the other elementary divisors.

Theorem 2.3.10 (Weierstrass). Every projective pencil µA+λB is strictly equivalent
to the canonical block-direct-sum

0h×g �
( p

�
i=g+1

Rεi

)
�

( q

�
j=h+1

tRηj

)
�

(
s

�
k=1

H(uk)
)
�

(
�
l,z

F(p(l)
z )wz

)
(2.17)

where the blocks 0h×g, Rεi and tRηj are uniquely determined by the minimal indices
ε1 . . . εp, η1 . . . ηq, the blocks H(uk) are uniquely determined by the elementary divisors
µu1 . . . µus and the Frobenius blocks F(p(l)

z )wz are uniquely determined by the other

elementary divisors (p(l)
z (µ, λ))wz .

Remark 2.3.11. From the beginning we have worked (and we will continue to work)
over an infinite field K. However the above classification holds over finite fields too (we
refer to the work of Mirwald in its PhD thesis [29]).

It is worth remarking how we can rewrite the Kronecker and Weierstrass forms in
(2.16) and (2.17) when the field K is algebraically closed (e.g. K = C). We recall that
Jw,a is the Jordan block with respect to the elementary divisor (λ+ aµ)w.

Theorem 2.3.12 (Kronecker). Let K = K. In the same notations as above, every
projective pencil µA+ λB is strictly equivalent to a canonical pencil of the form

0h×g
diag

(
{Rεi}

p
i=g+1

)
diag

(
{tRηj}

q
j=h+1

)
diag

(
{H(uk)}sk=1

)
diag

({
Jwlz ,alz

}
z,l

)


(2.18)

or equivalently to a canonical block-direct-sum of the form

0h×g �
( p

�
i=g+1

Rεi

)
�

( q

�
j=h+1

tRηj

)
�

(
s

�
k=1

H(uk)
)
�

(
�
l,z

Jwlz ,alz

)
(2.19)

This concludes our research for canonical representatives of the classes in

GLm(K)�
Mm×n(K[µ, λ]1)�GLn(K)
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Example 2.3.13. Let µA+λB be a projective pencil with minimal indices ε1 = 0, ε2 =
1, ε3 = 2, η1 = 0, η2 = 0, η3 = 2 and elementary divisors µ3, (λ + µ)2. Then the pencil
is strictly equivalent to the Kronecker form

0
0

λ µ

λ µ 0
0 λ µ

λ 0
µ λ

0 µ

µ λ 0
0 µ λ

0 0 µ

λ+ µ µ

0 λ+ µ


Next consider the pencil µC + λD with minimal indices ε1 = 0, ε2 = 0, ε3 = 2, η1 =
0, η2 = 1, η3 = 2 and elementary divisors µ2, (λ + µ)2, λ + µ. Then its Kronecker
canonical form is

0 0
λ µ 0
0 λ µ

λ

µ

λ 0
µ λ

0 µ

µ λ

0 µ

λ+ µ

λ+ µ µ

0 λ+ µ


By comparing the pencils µA+ λB and µC + λD we focus on the elementary divisors
of the form (λ+µ)k: in the first pencil we have just one elementary divisor of this form
and indeed there is just one corresponding block of size k = 2; instead in the second
pencil there are two elementary divisors which are powers of λ+µ, of multiplicity 1 and
2 respectively, and indeed we have two corresponding blocks of size 1 and 2 respectively.
This underlines that in the elementary divisors there is all the necessary information
to reconstruct the regular block of the canonical form. Same arguments hold for the
singular part but with minimal indices instead of elementary divisors.

Remark 2.3.14. Given a projective pencil µA + λB, to compute its Kronecker form
(or at least its Kronecker invariants) we need to:
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• compute the greatest common divisor of all the minor k × k and compute their
consecutive quotients: these are the invariant polynomials of the pencil;

• factorize the invariant polynomials: each factor (counted with multiplicity) is an
elementary divisor and it uniquely determines a block of size its degreee;

• compute the dimension of kerA∩ kerB and ker(tA)∩ ker(tB) to obtain the sizes
g and h respectively of the zero-block;

• compute the minima2 degrees of linearly independent vectors in ker(µA+ λB) \
(kerA∩ kerB) and in ker(µtA+λtB) \ (ker(tA)∩ ker(tB)) to obtain the minimal
indices εg+1, . . . , εp and ηh+1, . . . , ηq respectively.

In Chapter 6 we exhibit the implementations on Macaulay2 for the above steps.

2.4 Symmetric matrix pencils

Symmetric matrix pencils have a geometric interest: they describe pencils of projec-
tive quadrics (we will better investigate this aspect in the next chapter). Consider two
quadrics A and B in Pm−1

K described by the equations

A : A(X,X) =
m∑

i,j=1
aijXiXj and B : B(X,X) =

m∑
i,j=1

bijXiXj

Let A = (aij)i,j and B = (bij)i,j be the symmetric matrices associated to the equations
of A and B respectively: they generate a pencil of square matrices µA + λB which
describes a pencil of quadratic forms of equations µA(X,X) + λB(X,X). We remark
that a square matrix pencil is symmetric if it is defined by two symmetric matrices and
we denote the set of symmetric pencils of size m over K by

Sym2Km[µ, λ]1

Now consider X = TZ a non-singular linear transformation T (with detT 6= 0) of
the projective variables X1, . . . , Xm into the new variable Z1, . . . , Zm: we obtain two
quadrics Ã and B̃ described by the congruent matrices Ã = tTAT and B̃ = tTBT

respectively, hence we have a pencil

µÃ+ λB̃ = tT (µA+ λB)T

As for matrices, we say that the two above pencils are congruent and we denote it by

µA+ λB ≡ µÃ+ λB̃

2plural of the latin term minimum
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Obviously congruence is a particular case of strict equivalence where the acting ma-
trices are a non-singular matrix T and its transpose tT : indeed the transformation T

is constant (i.e. independent from µ, λ). Thus we may reformulate the above definition
of congruence in terms of the group action

GLm(K) −→ Aut
(

Sym2Km[µ, λ]1
)

T 7→
(
µA+ λB 7→ µ(tTAT ) + λ(tTBT )

)
Definition. Two symmetric pencils are congruent if they are in the same orbit with
respect to the above group action.

In general the converse does not hold, but it does over the complex field C: to prove
so we need the following lemma.

Lemma 2.4.1. Let U ∈Mm(C) be a non-singular complex matrix (detU 6= 0). Then
there exists a polynomial f(t) ∈ C[t] such that

f(U)2 = U

Proof. Let mU (t) be the minimal polynomial of U : we recall it vanishes only for all the
eigenvalues of U .
The condition the polynomial f(t) we are looking for must satisfy is equivalent to the
condition mU (t) | f(t)2 − t, hence f(λ)2 − λ = 0 for all λ ∈ C eigenvalue of U . In
particular we can look for a polynomial f(t) such that

∀λ ∈ Eigval(U), f(λ) =
√
λ

Let Eigval(U) = {λ1, . . . λs} and for all i = 1 : s let ki be the multiplicity of λi as root
of the characteristic polynomial of U (i.e. its algebraic multiplicity). We put f(t) the
polynomial interpolating the function g(t) =

√
t and its derivatives until the (ki−1)-th

in the points λi, i.e.

f(λi) = g(λi) , f (j)(λi) = g(j)(λi) ∀i = 1 : s , ∀j = 0 : ki − 1

We note that we are allowed to consider it since the only singularity of the function is
in 0 but 0 /∈ Eigval(U) since U is non-singular. Thus such f(t) satisfies mU (t) | f(t)2−t
and this concludes the proof.

Theorem 2.4.2. Two symmetric complex pencils are strictly equivalent if and only if
they are congruent:

P1
◦∼ P2 ⇐⇒ P1 ≡ P2
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Proof. The “only if” implication is obvious since the matrix which defines the congru-
ence is constant. Let us see the “if”.
Let P1 = µA+ λB and P2 = µÃ+ λB̃ be two strictly equivalent symmetric pencils of
size m: then there exist two constant non-singular matrices P,Q ∈ GL(m) such that
P2 = P · P1 ·tQ. By transposing the whole equation we obtain

P2 = tP2 = Q ·tP1 ·tP = Q · P1 ·tP

Since tP and Q are non-singular too, we obtain

P · P1 ·tQ = Q · P1 ·tP =⇒ P1 · (tQ) · (tP )−1 = P−1 ·Q · P1

We set U = (tQ) · (tP )−1 (which is still non-singular) and we have P1 · U = tU · P1.
This equality extends to every polynomial in U : given f(t) a polynomial, it holds

P1 · f(U) = tf(U) · P1

Let f(t) be such that det(f(U)) 6= 0 (at least the polynomial f(t) = t satisfies it since
U is non-singular): then

P1 = tf(U) · P1 · f(U)−1 =⇒ P2 = P · P1 ·tQ = P ·
(
tf(U) · P1 · f(U)−1

)
·tQ

The last equality would be a congruence transformation between P1 and P2 if

t
(
P ·tf(U)

)
= f(U)−1 ·tQ ⇐⇒ f(U)2 = (tQ) · (tP )−1 = U

But from the previous lemma we can choose f(t) such that the last equality holds.
Thus the matrix T = f(U)−1 ·tQ gives the congruence

P2 = tT · P1 · T ≡ P1

Corollary 2.4.3. Two pencils of complex quadratic forms µA+ λB and µÃ+ λB̃ can
be carried into one another by a non-singular transformation X = TZ if and only if
the symmetric complex pencils µA+ λB and µÃ+ λB̃ describing them have the same
minimal indices and the same elementary divisors.

Remark 2.4.4. In a symmetric pencil the minimal indices for columns and rows co-
incide, i.e. p = q and ε1 = η1, . . . , εp = ηq, since by transposing the pencil it remains
the same. Hence from now on we will talk about minimal indices without distinction
between rows and columns and we will denote them ε1 = . . . = εg = 0, εg+1, . . . , εp.
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2.4.1 The symmetric Kronecker form over C

Let us fix K = C. We are now interested in a canonical form of strict equivalence
(or equivalently, of congruence) which is symmetric too since the canonical form we
referred to until now is not so. Let Wk be the inverse diagonal matrix3 of size k

Wk =

 1

. .
.

1


We will use this matrix to symmetrize the blocks in the Kronecker form.
Let µA + λB be a complex symmetric pencil with minimal indices ε1 = . . . = εg =
0, εg+1, . . . , εp and elementary divisors µu1 , . . . , µus , (λ+ µa1)c1 , . . . , (λ+ µat)ct .

• For all i = g + 1 : p we join the singular blocks Rεi and tRεi in the symmetric
singular block of size 2εi + 1

Sεi =
[

0 Rεi
tRεi 0

]
(2.20)

uniquely determined by the minimal indices.

• For all j = 1 : s we right-multiply the regular block H(uj) by the block Wuj and
we obtain the symmetric regular block of size uj

K(uj) = H(uj)Wuj =


λ µ

. .
.

. .
.

λ . .
.

µ


uniquely determined by the elementary divisor µuj .

• For all k = 1 : t we right-multiply the regular Jordan block Jck,ak by the block
Wck and we obtain the symmetric regular block of size ck

J̌ck,ak = Jck,akWck =


µ λ+ akµ

. .
.

. .
.

µ . .
.

λ+ akµ

 (2.21)

uniquely determined by the elementary divisor (λ+ akµ)ck .
3the only non zero elements are the ones on the inverse diagonal which are 1
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By joining the singular blocks in one we are just re-ordering the basis, hence we
are acting by coniugacy and this preserves the strict equivalence classes. The right-
multiplication by Wk preserves the strict equivalence classes too. Thus the symmetric
matrix we obtain is strictly equivalent to the pencil we are working with.

Theorem 2.4.5 (Kronecker - complex symmetric form). Every symmetric complex
pencil µA + λB is strictly equivalent to a canonical symmetric complex pencil of the
form 

0g
diag(Sεg+1 . . . Sεp

)
diag(K(u1), . . . ,K(us))

diag(J̌c1,a1 , . . . , J̌ct,at)

 (2.22)

where the blocks 0g and Sεi are uniquely determined by the minimal indices εi, the
blocks K(uj) are uniquely determined by the elementary divisors of the form µuj and the
blocks J̌ck,ak are uniquely determined by the elementary divisors of the form (λ+µak)ck .

2.4.2 The symmetric Kronecker form over R

Let us now fix K = R. Obviously the symmetric canonical form we found out over
the complex field does not hold anymore since we may have elementary divisors which
are powers of quadratic polynomials, hence we need other regular symmetric blocks
than the Jordan ones.

Remark 2.4.6. It is worth noting that, given µA+λB a symmetric pencil over R such
that B is definite positive, then all roots of det(µA+λB) are real [15, Ch.IX, §13], that
is all the elementary divisors are powers of linear real polinomials and we just need the
Jordan blocks (as in the complex case).

We recall that for general pencils (not necessarily symmetric) these blocks are the
Frobenius blocks with respect to suitable polynomials (so that their determinants are
exactly the elementary divisors). Clearly we can not symmetrize a Frobenius block
F(p(j)

k
)wk by the inverse diagonal matrix W

wk·deg(p(j)
k

).
Since the characteristic polynomial of a real symmetric matrix is completely factoris-

able (i.e. its eigenvalues are all real), one at first may hope that even the determinant
of a real symmetric pencil is completely factorisable, but unfortunately this does not
hold. An elementary counterxample is given by the real symmetric regular pencil

µ

[
0 1
1 0

]
+ λ

[
1 0
0 −1

]

whose determinant is −(λ2 + µ2) which is irreducible over R. To solve this we resort
to the real Jordan form of a matrix.
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First of all we note that the only blocks we still need to fix are the ones related
to elementary divisors of the form (λ2 + akµλ+ bkµ)wk where ak, bk ∈ R, since all the
other blocks are symmetrizable just as in the complex case. Thus we restrict ourselves
to study the case of a real symmetric regular pencil with one only elementary divisor.

Let µR + λS be a real symmetric regular pencil with only elementary divisor (λ2 +
akµλ+ bkµ)hk and let λ2 + akµλ+ bkµ = (λ− αkµ)(λ− αkµ) be the factorization over
the algebraic closure C. We recall that the real Jordan form with respect to a complex
eigenvalue α ∈ C of multiplicity hα is the 2hα block-matrix

JRα,hα =



<(α) =(α)
−=(α) <(α)

1 0
0 1
. . .

. . .

. . .
1 0
0 1

<(α) =(α)
−=(α) <(α)



with hα diagonal blocks of size 2.
We define Rα,hα the real Jordan block of size 2hα with respect to ((λ−αµ)(λ−αµ))hα
as the pencil of size 2hα

Rα,hα = µJRα − λI =



<(α)µ− λ =(α)µ
−=(α)µ <(α)µ− λ

µ 0
0 µ
. . .

. . .

. . .
µ 0
0 µ

<(α)µ− λ =(α)µ
−=(α)µ <(α)µ− λ



Note: A simple count shows that the pencil Rα,hα is regular with only elementary divi-
sor ((λ− αµ)(λ− αµ))hα , hence it is strictly equivalent to the Frobenius block defined
by the same elementary divisor.

The advantage we take from the above construction is that we can symmetrize the
real Jordan block by right-multiplation by the inverse diagonal: thus we obtain the
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symmetric real regular block of size 2hα

Řα,hα = Rα,hαW2hα =



0 µ

µ 0
=(α)µ <(α)µ− λ
<(α)µ− λ −=(α)µ

. .
.

. .
.

0 µ

µ 0
. .
.

=(α)µ <(α)µ− λ
<(α)µ− λ −=(α)µ


uniquely determined by the elementary divisor ((λ− αµ)(λ− αµ))hα .

Theorem 2.4.7 (Kronecker - real symmetric form). Every real symmetric pencil µA+
λB is strictly equivalent to a canonical real symmetric pencil of the form

0g
diag({Sεi

}pi=g+1)
diag({K(uj)}sj=1)

diag({J̌ck,ak
}tk=1)

diag({Řαf ,hf
}lf=1)

 (2.23)

where the blocks 0g and Sεi are uniquely determined by the minimal indices εi, the
blocks K(uj) are uniquely determined by the elementary divisors of the form µuj , the
blocks J̌ck,ak are uniquely determined by the completely factorisable elementary divisors
of the form (λ+µak)ck and the blcoks Řαf ,hf are uniquely determined by the elementary
divisors of the form ((λ− αfµ)(λ− αfµ))hf .
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Chapter 3

Classification of pencils of
projective quadrics

In this chapter we study two applications of the Kronecker form for symmetric
pencils to complex quadratic forms: the simultaneous reduction of complex
quadratic forms and the Segre classification of intersections of two projective
quadrics. In the latter we define two new invariants for symmetric pencils (the
Segre symbol and the continuous moduli) and give the complete classification
in P2

C and P3
C. In the last section we give a geometric interpretation of the

Kronecker form in terms of projective lines and singularity of the base loci via
projective bundles.

In this chapter we work over K = C.

3.1 Simultaneous reduction of complex quadratic forms

Our goal in this section is to answer to the following question: given two complex
quadratic forms

A(X,X) =
m∑

i,j=1
aijXiXj , B(X,X) =

m∑
i,j=1

bijXiXj

under which conditions can they be reduced simultaneously to sums of squares

Ã(X,X) =
m∑
i=1

ãiZ
2
i , B̃(X,X) =

m∑
i=1

b̃iZ
2
i

by a non singular transformation X = TZ?
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We recall that two complex quadratic forms define a complex symmetric pencil.
To ask for two complex quadratic forms to be simultaneously reducible to other two
is to ask for the related complex symmetric pencils to be strictly equivalent. Thus to
answer the question it is enough to study the Kronecker form of the pencil defined by
two complex quadratic forms which are sums of squares.

Consider the complex quadratic forms

Ã(X,X) =
m∑
i=1

ãiZ
2
i , B̃(X,X) =

m∑
i=1

b̃iZ
2
i

and let P̃ = µÃ + λB̃ the complex symmetric pencil they define. Let rA = Rk Ã
and rB = Rk B̃: since Ã and B̃ are diagonal matrices, the rank of the pencil is
rmax{rA, rB}. Up to a basis re-ordering we may assume ãrA+1 = . . . = ãm = b̃rB+1 =
. . . = b̃m = 0. Thus the pencil is of the form

P̃ = diag(µã1 + λb̃1, . . . , µãr + λb̃r, 0, . . . , 0)

Clearly the above pencil has minimal indices identically zero ε1 = . . . = εm−r = 0 and
linear elementary divisors µã1 +λb̃1, . . . , µãr+λb̃r: we remark that we are not assuming
ãi (resp. b̃j) to be distinct but the elementary divisors to have multiplicity 1.
Thus the following theorem is just a corollary and it completely answers to our question.

Theorem 3.1.1. Two complex quadratic forms A(X,X) and B(X,X) can be reduced
simultaneously to sums of squares by a non singular transformation of the variables if
and only if the pencil µA+ λB they describe has identically-zero minimal indices and
linear elementary divisors.

Corollary 3.1.2. Let P = µA+ λB be a complex symmetric pencil of size m and let
rA, rB be the ranks of A and B respectively. If P has identically zero minimal indices
and linear elementary divisors, then

P ≡ µ


a1

. . .

arA

0

+ λ

[
IrB

0

]

3.2 Segre classification of intersections of two quadrics

Let X0, . . . , Xm be coordinates for Cm+1. The quadratic forms

A(X,X) =
m∑

i,j=0
aijXiXj , B(X,X) =

m∑
i,j=0

bijXiXj
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(where A = (aij) and B = (bij) are symmetric matrices) define two quadrics A,B in
PmC . As in the previous section we may consider the matrix pencil P = µA+λB which
describes a pencil of quadrics P in PmC . For each elementary divisor (xiµ + yiλ)e

i
j we

may consider its root [yi : −xi] ∈ P1 with multiplicity eij . We refer to these roots as to
the roots of the pencil.

Definition. Let P be a pencil of quadrics with minimal indices ε1 = . . . = εg = 0,
εg+1, . . . , εp and elementary divisors {(xiµ+yiλ)ei1 , . . . , (xiµ+yiλ)e

i
ri | i = 1 : k}, where

the k roots [yi : −xi] are all distinct. We define its Segre symbol to be the ordered
sequence of its invariants

Σ(P) =
[
(e1

1, . . . , e
1
r1) . . . (ek1, . . . , ekrk); εg+1, . . . , εp; g

]
(3.1)

with the ordering

r1 ≥ . . . ≥ rk , ei1 ≥ . . . ≥ eiri , εg+1 ≤ . . . ≤ εp

In particular, we put semicolons when we pass from the (multiplicities of the) roots to
the non-zero minimal indices and from the latter to the number of the zero minimal
indices; the round brackets distinguish the multiplicities of different roots and they are
omitted if ri = 1.

Example 3.2.1. • The pencil
[
λ

µ

0

]
has Segre symbol [1 1; ; 1].

• The pencil
[
µ λ

λ

0

]
has Segre symbol [2; ; 1].

• The pencil
[
µ λ

λ

λ

]
has Segre symbol [(2 1)].

However the Segre symbol does not uniquely define the pencil even up to GL-action
(that is up to strict equivalence and to GL2(C)-action on P1): indeed it contains the
informations about the multiplicities of the roots but not the ones about their position
in the projective space. The latter information is actually important from a geometric
point of view, thus to completely determine a pencil of quadrics we need one more
object.
Let k be the number of the distinct roots [yi : −xi] ∈ P1 of the pencil. Up to acting
by GL2(C) on P1 we may always assume such roots to be of the form [1 : −xi

yi
], hence

represent them as scalars zi ∈ C. Moreover, since they are all distinct, we may look at
them in the space

C(k) =
{
z ∈ Ck | zi 6= zj ∀i 6= j

}
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To simultaneously change them by GL2(C)-action on P1 defines on C(k) the following
equivalence relation

z ∼ w ⇐⇒ ∃
[
a b

c d

]
∈ GL2(C) : ∀i = 1 : k, wi = azi + b

czi + d
(3.2)

Hence the quotient C(k)/∼ parametrizes all the possible k-tuples of roots (up to GL2(C)-
action on P1) of a pencil with k distinct roots.

Definition. A class [v] ∈ C(k)/∼ is called a continuous modulus.

The next result follows straightforward.

Proposition 3.2.2. Let P = µQ1 + λQ2 be a pencil of quadrics such that [Q1] 6=
[Q2] ∈ PW . Then P is uniquely determined up to GL-action by its Segre symbol as in
(3.1) and by a continuous modulus [v] ∈ C(k)/∼.

The classification of intersections of complex quadrics is quite immediate because of
the next result [20, Ch.XIII, §10] which directly follows by corollary 2.4.3.

Theorem 3.2.3. Let P and Q be two pencils of quadrics in Pm with roots [µPi : λPi ]
and [µQi : λQi ] for i = 1 : k. Then P and Q are projectively equivalent in Pm if and
only if they have the same Segre symbols. In such case there is an automorphism of P1

taking [µPi : λPi ] to [µQi : λQi ] for all i with same multiplicities.

Remark 3.2.4. Theorem 3.2.3 allows us to start from the Kronecker form and this
helps to avoid equivalent or unattainable cases. For example in P1 the quadrics X2

0
and αX2

0 do not define a pencil, while the pairs of quadrics (2X0X1, 2αX0X1 + X2
1 )

and (X2
0 , 2X0X1) define equivalent pencils. Moreover, we avoid the zero pencil and

the pencils depending on one only variable, since they do not describe intersections of
quadrics.

3.2.1 Classification in P2
C

We fix P2 = P2
C with coordinates x, y, z. Since we are working with symmetric pencils,

we use the symmetric Kronecker form (2.22). To lighten up the notation, we do not
make distinctions between the quadrics and their equation, that is we will write A =
A(X,X). We denote by A and B the quadrics defining the pencil and by V (P) the
base locus of their intersection. Remark 3.2.4 ensures us that the only possible pencils
(or equivalently, intersections) are the ones listed below.
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Regular pencil Segre sym. A B V (P)[
λ

λ+ µ

µ

]
[1 1 1] y2 − z2 x2 − y2 four distinct pointsµ λ

λ

µ

 [2 1] x2 − z2 2xy a double point and
two other pointsλ λ

µ

 [(1 1) 1] z2 x2 − y2 two double points

 µ λ

µ λ

λ

 [3] 2xy y2 + 2xz a curvilinear triple point
and another pointµ λ

λ

λ

 [(2 1)] x2 2xy + z2 a curvilinear
quadruple point

(3.3)

Singular pencil Segre sym. A B V (P) λ µ

λ

µ

 [; 1; ] 2xz 2xy a line and
a disjoint pointλ µ

0

 [1 1; ; 1] y2 x2 a non-curvilinear
quadruple pointµ λ

λ

0

 [2; ; 1] x2 2xy a line and an
embedded double point

(3.4)

For all 8 cases one may find out the base locus with a direct calculus of the intersect-
ing equations or by computing on Macaulay2 the primary decomposition of the ideal
generated by the the equations of the two quadrics: to avoid approximated calculus we
chose the equations of the quadrics such that the primary decomposition in Q[x, y, x]
was the same than over C (for instance, y2 − z2 instead of y2 + z2).

Example 3.2.5. Consider the case with Segre symbol [2 1]:
i1: R=QQ[x,y,z];
i2: I=ideal(xˆ2-zˆ2,x*y);
i3: primaryDecomposition I
o3: {ideal (y,x+z), ideal (y,x-z), ideal (x,zˆ2)}

The primary ideal (x, z2) determines the double point [0 : 1 : 0], while the primary
ideal (y, x± z) describes the distinct (simple) point [1 : 0 : ∓1].

Remark 3.2.6. Regular and singular pencils geometrically differ in the condition

P is regular ⇐⇒ V (P) is contained in a smooth curve
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Moreover, every regular case (table (3.3)) gives a 0-dimensional zero locus. Neverthless
not all singular cases give a 1-dimensional zero locus: indeed the case [1 1; ; 1] has a
quadruple point as zero locus, that is 0-dimensional.

To better geometrically classify the base loci in tables 3.3 and 3.4 we have to underline
what being a double or triple point means. To do this it is helpful to introduce affine
schemes.

Affine schemes, 0-dimensional nonreduced. In the following, given the functor

Spec :
{

rings
}
−→

{
schemes

}
which associates to every ring R the scheme Spec(R), we focus on the case R =
C[x1 . . . xm]. Consider the affine scheme Am = AmC = Spec(C[x1 . . . xm]). Every ideal
I ⊂ C[x1 . . . xm] defines an affine subscheme

X = Spec(C[x1 . . . xm]/I)

which is 0-dimensional if and only if C[x1 . . . xm]/I has finite dimension as C-vector
space: in this case, one refers to such dimension as the length of X.
Since we are interested in multiple points, we have to investigate 0-dimensional nonre-
duced affine schemes, that is schemes where the ring C[x1 . . . xm]/I has nilpotents or,
equivalently, the ideal I is not radical.
The first case to analyze is given by length-2 nonreduced schemes: every such scheme
is isomorphic to

Spec
(
C[x]/(x2)

)
and it corresponds to the double point1 (x2). Geometrically, a double point is the
intersection point between a smooth curve and the tangent line to the curve in that
point: in particular, it may be represented by a point equipped with an outgoing arrow
describing the direction of the tangent line (Fig.3.1(a)).
A length-3 nonreduced scheme is isomorphic to either

Spec
(
C[x]/(x3)

)
or Spec

(
C[x, y]/(x2, xy, y2)

)
' Spec

(
C[x, y]/(x, y)2

)
(see [12, Ch.II, §3]) and it correspond to the curvilinear triple point (x3) or to the
fat triple point (x, y)2 respectively. Geometrically, the first type may be seen as the
intersection point between a smooth curve and a line in a flex, while the latter as
a point to which two other points approach from different directions: in particular, a
curvilinear triple point may be represented by a point equipped with an outgoing arrow
(Fig.3.1(b)) while a fat triple one by a circled point (Fig.3.1(c)).

1here we do not make distinction between the ideal and its variety
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(a) double point (b) curvilinear triple point (c) fat triple point

Figure 3.1: Double and triple points

Since the base loci we deal with are projective, we also need to introduce projective
schemes and show how to pass from them to the affine ones to recover the geometric
informations we have just seen. We spoiler that the passage from the projective to the
affine will be by localization which is the algebraic equivalent to the geometric passage
to affine chart.

Projective schemes, localizations. Consider the functor

Proj :
{

graded rings
}
−→

{
schemes

}
which associates to every graded ring A = A0⊕A+ the projective scheme Proj(A) given
by the homogeneous prime ideals which do not contain the positive component A+

Proj(A) = {p ∈ Spec(A) | p + A+, p homogeneous}

with the topology defined by the closed sets

V+(J) = {p ∈ Proj(A) | J ⊂ p} , ∀J ⊂ A ideal

Let us fix the graded ring A = C[x1 . . . xm+1] and the projective scheme Pm = PmC =
Proj(A). Given a homogeneous ideal I ⊂ A, we consider the subscheme Proj(A/I): for
every homogeneous element f ∈ (A/I)+ it holds [28, Ch.II, Proposition 3.38]

Proj(A/I) \ V+(f) = Spec
(
(A/I)f

)
(3.5)

that is we may endow Proj(A/I) with an affine-scheme structure on the open sets of
the form Proj(A/I) \ V+(f). Thus by (3.5) we can study the geometric properties of a
0-dimensional projective scheme by studying a 0-dimensional affine scheme.

Let us underline the geometric properties of the zero loci in table (3.3).

• For [1 1 1], the zero locus is given by the four distinct (simple) points (y±z, x±z)
with the property that three of them are never collinear (by Bèzout theorem).

• For [2 1], neither two distinct (simple) points (y, x + z) and (y, x− z) lie on the
tangent line of the double point (x, z2) (Fig.3.2(a)).
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• For [(1 1) 1], the tangent lines of the two double points (z2, x+ y) and (z2, x− y)
do not intersect eachothers (Fig.3.2(b)).

• For [3], the triple point (y2 + 2xz, xy, x2) is curvilinear since by (3.5) we have in
the chart {z 6= 0} it holds

Proj
(
C[x, y, z]/(y2 + 2xz, xy, x2)

)
= Spec

((
C[x, y, z]

/
(y2 + 2xz, xy, x2)

)
z

)

= Spec
(
C[u, v]/(v2 + 2u, uv, u2)

)
' Spec(C[v]/(v3))

where u = x
z and v = y

z (or equivalently, since the curve y2 +2xz is smooth). The
simple point (y, z) does not lie on its tangent line (Fig.3.2(c)).

• For [(2 1)], the quadriple point (2xy + z2, x2) is curvilinear since by (3.5) in the
chart {y 6= 0} it holds (for u = x

y and w = z
y )

Proj
(
C[x, y, z]/(2xy + z2, x2)

)
= Spec

((
C[x, y, z]

/
(2xy + z2, x2)

)
y

)

= Spec
(
C[u,w]/(2u+ w2, u2)

)
' Spec(C[w]/(w4))

(a) [2 1] (b) [(1 1) 1] (c) [3]

Figure 3.2: Some base loci of pencils of quadrics in P2

The real case. Tables (3.3) and (3.4) make it clear that in P2
C there are 5 possible non-

singular intersections and 3 singular ones, for a total of 8 cases. The complex case allows
to determine the classfication in P2

R too: indeed, since the invariant for congruence over
R is the signature of the quadratic form, at worst each complex invariance class splits
into different real invariance classes. More precisely, the splitting classes are the ones
whose subdiscriminant has at least two different roots, that is

• the class represented by the Segre symbol [1 1 1] splits in 3 real classes;

• each class of the ones represented by [2 1], [(1 1) 1] and [1 1; ; 1] splits in 2 real
classes.

Thus in P2
R there are 13 cases of which 9 are non-singular and 4 are singular.
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3.2.2 Classification in P3
C

We fix P3 = P3
C with coordinates x, y, z, w. In this case we only list the regular pencils

(or equivalently, non-singular intersections). The same remarks (in the same notations)
done in P2

C lead to the following non-singular intersections.

Regular pencil Segre sym. A B V (P)λ λ+ µ

λ− µ
µ

 [1 1 1 1] y2 − z2 + w2 x2 + y2 + z2 elliptic curve


µ λ

λ

µ

λ+ µ

 [2 1 1] x2 + z2 + w2 2xy + w2 nodal curve


λ

λ

µ

λ+ µ

 [(1 1) 1 1] z2 + w2 x2 + y2 + w2
two conics

in general position
(Fig.3.3(a))


µ λ

µ λ

λ

µ

 [3 1] 2xy + w2 y2 + 2xz cuspidal curve


µ λ

λ

λ

µ

 [(2 1) 1] x2 + w2 2xy + z2 two tangent conics
(Fig.3.3(b))


λ

λ

λ

µ

 [(1 1 1) 1] w2 x2 + y2 + z2 a double conic


µ λ

λ

λ µ

µ

 [2 2] x2 + 2zw 2xy + z2 a twisted cubic
and a bisecant


λ

λ

λ µ

µ

 [(1 1) 2] 2zw x2 + y2 + z2
a conic and two lines

in triangle
(Fig.3.3(c))


λ

λ

µ

µ

 [(1 1) (1 1)] z2 + w2 x2 + y2
four lines in two plane-pairs

intersecting eachothers
(Fig.3.3(d))

(3.6)
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Regular pencil Segre sym. A B V (P)
µ λ

µ λ

µ λ

λ

 [4] y2 + 2xz 2(xw + yz) a twisted cubic
and a tangent line


µ λ

µ λ

λ

λ

 [(3 1)] 2xy y2 + 2xz + w2
a conic and two lines

intersecting in one point
(Fig.3.3(e))


µ λ

λ

µ λ

λ

 [(2 2)] x2 + z2 2(xy + zw) a double line meeting
two disjoint lines


µ λ

λ

λ

λ

 [(2 1 1)] x2 2xy + z2 + w2 two double lines
intersecting

(3.7)

All the base loci in tables (3.6) and (3.7) can be obtained in Macaulay2 by computing
the primary decomposition of the polynomial ideal generated by the equations of the
two corresponding quadrics. For a detailed geometric description we refer to [20, pgg.
305-308].

(a) [(1 1) 1 1] (b) [(2 1) 1] (c) [(1 1) 2]

(d) [(1 1) (1 1)] (e) [(3 1)]

Figure 3.3: Some base loci of pencils of quadrics in P3

3.3 A geometric interpretation

The aim of this section is to give a geometric interpretation to the equivalence classes
of pencils of complex quadrics, that is to describe some geometric properties which



3.3 A geometric interpretation 53

uniquely determine their Kronecker class. To do so we first need to introduce the
geometric objects which are related to a pencil of quadratic forms.

Let W be the vector space of quadratic forms on Cm+1, i.e.

W =
{
Q : Cm+1 → C quadratic form

}
and let PW be its projective space. We also consider for all r = 1 : m+ 1 the subset

Wr = {Q ∈W | Rk(Q) = r} ⊂W

of the quadratic forms of fixed rank r and the corresponding projectivized PWr: the
latter are irreducible smooth quasi-projective varieties. These varieties have the fol-
lowing properties [10, Proposition 1.1], where PWr denotes the Zariski closure of the
variety and Sing(PWr) its singular part.

Proposition 3.3.1. (i) PWr = ⋃r
i=1 PWi for all r = 1 : m+ 1;

(ii) codimPWr = (m+1−r)(m+2−r)
2 for all r = 1 : m+ 1;

(iii) ∀1 < r < m+ 1, PWr−1 = Sing(PWr).

Next we introduce the geometric objects related to a pencil of quadrics. Given a pencil
P = µQ1 +λQ2 defined by two linearly independent quadratic forms Q1, Q2 ∈W \{0},
it determines a projective line LP ⊂ PW and a projective variety V (P) ⊂ Pm given by
the base locus of the intersection of the two quadrics, that is V (P) = {Q1 = Q2 = 0}.

Our claim is to prove that the Kronecker class of a pencil of quadrics P is uniquely
determined by the “position” of the line LP with respect to the subvarieties PWr and
by the singular part Sing(V (P)) of the base locus V (P): actually one may bet that the
position of the line LP determines the regular part of the pencil (or equivalently the
multiplicities of its elementary divisors) while Sing(V (P)) the singular part (that is its
minimal indices).

Remark 3.3.2. In this section by “singular part” of the base locus we refer not only
to its schematically-singular one (i.e. subvarieties of multiplicity greater than 1 such
as multiple points or multiple lines) but also to its part of dimension greater than the
expected one. For instance, in P2 the singular part of the base locus of the pencil
of quadrics [2; ; 1] is not only the double point (x2, y) but also the line (x) (see also
example 3.3.24).

The thread of this section will be the following: first we define the notion of similar
position of two lines in PW and we show how it determines the regular part of the
pencil; then we briefly introduce the notion of projective bundle and we explicitly build
some of them over P1; finally we study how Sing(V (P)) determines the minimal indices
of P.
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3.3.1 Similar position of lines in PW

Let L ⊂ PW be a projective line of quadrics. We define

m0(L) = min{r | L ⊂ PWr}

and, given {P1, . . . , PqL} = L ∩ PWm0(L)−1, for all i = 1 : qL and j = 1 : m0(L)− 1 we
set

mij(L) = multPi(L ∩ PWm0(L)−j)

to be the multiplicity of intersection in the point Pi. Moreover, for all i = 1 : qL we set

ki(L) = max{k | Pi ∈ PWm0(L)−k}

thus for all i = 1 : qL we have mij(L) = 0 for all j > ki(L) and we may restrict to
consider j = 1 : ki(L).

Definition. Two lines L,L′ ⊂ PW are said to have similar position with respect to
the varieties {PWr | r = 1 : m+ 1} if

• m0(L) = m0(L′);

• q(L) = q(L′);

• there exists an isomorphism h : L→ L′ such that

� h(Pi) = P ′i ;
� ki(L) = ki(L′) for all i = 1 : q(L);
� mij(L) = mij(L′) for all i = 1 : q(L) and j = 1 : ki(L).

In particular, we define the position of a line L ⊂ PW as the set of the above values.

The next result shows which informations are hidden in these values when considering
a line associated to a pencil of quadrics: for a proof we refer to [10, Lemma 2.3].

Lemma 3.3.3. Let P be a pencil of quadrics with Segre symbol

Σ(P) =
[
(e1

1, . . . , e
1
r1) . . . (ek1, . . . , ekrk); εg+1, . . . , εp; g

]
and let LP ⊂ PW be the corresponding line. Then:

(i) m0(LP) = m+ 1− p;

(ii) q(LP) = k, that is the number of intersection points Pi is equal to the number of
the roots of the pencil;
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(iii) ki(LP) = ri for all i = 1 : k;

(iv) mij(LP) = ∑ri−j+1
l=1 eiri−l+1 for all i = 1 : k and j = 1 : ri.

We may reformulate lemma 3.3.3 in terms of similar position.

Proposition 3.3.4. Let P,P ′ be two pencil of quadrics with corresponding lines
L,L′ ⊂ PW respectively. Then L,L′ have similar position if and only if the pencils
have Segre symbols with the same multiplicities (i.e k = k′ and eij = (e′)ij) and same
number of minimal indices (i.e. same p = p′), other than same continuous modulus
[v] ∈ C(k)/∼.

Corollary 3.3.5. If P is a regular pencil of quadrics, then it is uniquely determined
by the position of LP .

Proof. The position of LP is given by the values m0(LP), q(LP), ki(LP) and mij(LP).
If the pencil is regular (i.e. p = 0), it is completely determined by the multiplicities of
the roots and by the continuous moduli, hence by proposition 3.3.4 and lemma 3.3.3
we conclude.

Remark 3.3.6. We underline that if the pencil is singular, the position of LP is not
enough to uniquely determine it: indeed in proposition 3.3.4 we do not ask to have the
same minimal indices but only the same number of them.

By proposition 3.3.4 it is clear that the position of the line LP completely determine
the regular part of the pencil.

Example 3.3.7 (Projective plane, position of lines). Consider the Segre classification
of regular pencils of quadrics in P2. First of all we note that in this case PW ' P5 with
determinant hypersurface PW2.
For each pencil P in table (3.3) we have p = g = 0, thus by lemma 3.3.3 it follows
m0(LP) = 3: indeed by proposition 3.3.1(ii) we know that dim(PW2) = 5 − 1 = 4
but none of such pencils is contained in a hypersurface. In particular, the regular
pencils of quadrics in P2 are never contained in the determinant hypersurface PW2,
hence they cut it in a finite number of points. But PW2 = PWm0(LP )−1, hence the
number of such intersection points is exactly the value q(LP). However the value q(LP)
is still not enough to distinguish all the cases (see table 3.8) and actually neither the
multiplications of intersection with PW2 are enough. One has to study the intersections
with PW1 too: indeed the pencils [2 1] and [3] do not intersect PW1 while [(1 1) 1] and
[(2 1)] do since for λ = 0, µ = 1 the latter pencils have rank 1.
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The same arguments may be reformulated for singular pencils.

Σ(P) LP det(P) q(LP) LP ∩ PW2 LP ∩ PW1
[1 1 1] λx2 + (µ− λ)y2 − µz2 λ(λ+ µ)µ 3 1 + 1 + 1 ∅
[2 1] µx2 − µz2 + 2λxy λ2µ 2 2 + 1 ∅

[(1 1) 1] λx2 − λy2 + µz2 λ2µ 2 2 + 1 1
[3] λy2 + 2λxz + 2µxy λ3 1 3 ∅

[(2 1)] µx2 + 2λxy + λz2 λ3 1 3 1
[; 1; ] µxz + λxy 0 0 LP ∅

[1 1; ; 1] µy2 + λx2 0 2 LP 1 + 1
[2; ; 1] µx2 + λxy 0 1 LP 2

(3.8)

Remark 3.3.8. Actually for m = 2, 3 the position of the line LP completely determines
the singular part too, hence the whole Segre symbol: this comes from combinatorial
restraints such as (2.14) and from the fact that each non-zero minimal index εi defines
a square block of size 2εi + 1 (see (2.20)). Let P be a singular pencil of quadrics with
Segre symbol Σ(P) =

[
(e1

1, . . . , e
1
r1) . . . (ek1, . . . , ekrk); εg+1, . . . , εp; g

]
with p > 0.

For P2 it is clear from table (3.4): if there are no roots at all (i.e. no elementary
divisors), then p = m+ 1 = 3 and the only possible case is [; 1; ] (since g = m+ 1 = 3
would give the identically zero pencil); if there is at least one root, then either there
is another root or the only one root has multiplicity 2 and in both cases it must be
p = g = 1.

In P3, if the pencil has two or three roots counted with multiplicity, then it must be
either p = g = 1 or p = g = 2 (since a block Rεi has at least size 3). If the pencil has
exactly one simple root, then it must be p = 1 > g = 0 and ε1 = 1 (since the pencil
diag(λ, 0, 0, 0) does not describe a pencil of quadrics by remark 3.2.4). If the pencil
has no root, the only possible case is g = 1 and εg+1 = εp = 1 (from size arguments as
well).

For P4 the position of LP is not enough in general: for instance, the pencils
0

0
0

µ λ

λ

 ,


λ µ

λ

µ

µ λ

λ


(with Segre symbols [2; 0; 3] and [2; 1; 0] respectively) have corresponding lines in

similar position but they are not equivalent.

At this moment it remains to determine the singular part of a pencil of quadrics P
and this is possible by analyzing Sing(V (P))2. As mentioned before, to do so we first
need to introduce some projective bundles over P1.

2in the sense of remark 3.3.2
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3.3.2 Projective bundles over P1

We define a projective bundle to be a bundle whose fibers are projective spaces.
In the following we restrict to consider projective bundles of vector bundles: given a
vector bundle E over a variety X, we consider the projective bundle PE given by the
projective spaces of the fibers of E .

Remark 3.3.9. Every vector bundle E defines a projective bundle PE but not every
projective bundle arises from a vector bundle: however the converse holds for X to be
a smooth variety, e.g. a compact Riemann surface. For more details we refer to [18,
Ch.II, §7].

We now give a formal definition for projective bundles of the form PE , that is over a
smooth variety X. Let p : E → X be a rank-r vector bundle over X: then there exist
a open covering {Ui}I of X and isomorphisms gi : p−1(Ui)→ Ui ×Cr for all i ∈ I such
that the transition maps are of the form

gij = gj ◦ g−1
i : (Ui ∩ Uj)× Cr → (Ui × Uj)× Cr

(P, v) 7→ (P,Gijv)

where Gij ∈ GLr(C).

Definition. In the above notations, the projective bundle ρ : PE → X is the bundle
over X defined by the trivializations ψi : ρ−1(Ui)→ Ui×Pr−1

C and the transition maps

ψij = ψj ◦ ψ−1
i : (Ui ∩ Uj)× Pr−1 → (Ui ∩ Uj)× Pr−1

(P, [v]) 7→ (P,Ψij [v])

where Ψij = [Gij ] ∈ PGLr(C).

Projective bundles of the form PE well behave with twistings of E by line bundles
[18, Ch.II, Lemma 7.9]. We recall that the isomorphism classes of line bundles on X

form the Picard group Pic(X).

Lemma 3.3.10. For all L ∈ Pic(X) there is a natural isomoprhism

PE ' P(E ⊗ L)

Proof. To tensorize E by L just multiplies the transition functions of E by a scalar
function but this does not affect the morphism in projective coordinates.

Corollary 3.3.11. For all L,L′ ∈ Pic(X) it holds

PL ' PL′ ' X
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Our interest is in projective bundles over P1: by remark 3.3.9 we know that every
such projective bundle is of the form PE for a certain vector bundle E . Such vector
bundles are completely classified as follows.

Theorem 3.3.12 (Segre-Grothendieck splitting theorem). Every holomorphic rank-r
vector bundle E over P1

C splits into a direct sum of holomorphic line bundles

E '
r⊕
i=1
O(ei)

for certain e1, . . . , er ∈ Z.

Remark 3.3.13. Grothendieck [16] explicitly proved it in 1957 as particular case of a
more general result, but its formulation is equivalent to the Birkhoff factorization due
to Birkhoff [3] in 1909: a simplification of the latter proof was given by Hazewinkel
and Martin [19] in terms of linear algebra. However in 1884 Segre [34] proved this
theorem too even if without the bundle language: this is why we refer to it as the
Segre-Grothendieck theorem.

The splitting theorem 3.3.12 allows to determine when two projective bundles (of the
same rank of course) over P1 are isomorphic3.

Proposition 3.3.14. Let E = ⊕r
i=1O(ai) and F = ⊕r

j=1O(bj) be vector bundles over
P1. Then

PE bundles' PF ⇐⇒ ∃m ∈ Z, ∃σ ∈ Sk : ai − bσ(i) = m ∀i

Proof. First of all we note that the right condition is equivalent to

∃m ∈ Z : E ' F ⊗O(m)

Thus the “if” condition directly follows by lemma 3.3.10.
For the “only if” condition, we assume there exists an isomorphism of projective bundles
ϕ : PE ∼→ PF and we consider the transition maps for PE and PF

[G01] = P

(x0
x1

)a1

. . .

(x0
x1

)ak

 , [H01] = P

(x0
x1

)b1

. . .

(x0
x1

)bk


respectively, where the “P” denotes we are considering the classes in PGLk(C).
We may assume that ϕ is (uniquely) defined by the matrix

Φ̃01 = P

(x0
x1

)b1−a1

. . .

(x0
x1

)bk−ak


3as projective bundles over P1
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in PGLk(C): indeed the automorphisms of E which fix P1 are

ker
(

Aut(PE)→ Aut(P1)
)

= PAut(E)

and, given Φ01 ∈ PGLk(C) the matrix defining ϕ, there are ψM ∈ PAut(E) and ψN ∈
PAut(F) such that Φ̃01 = M · Φ01 · N , hence we may consider the isomorphism of
projective bundles φ̃ = ψN ◦ ϕ ◦ ψM : PE → PF . But such Φ̃01 gives an isomoprhism if
and only if Φ̃01 = [I] ∈ PGLk(C) and this holds if and only if there exists m ∈ Z such
that ai − bi = m for all i = 1 : k.

Moreover, projective bundles over P1 are uniquely determined (up to isomorphism)
by their structure as varieties, as follows by the next result.

Lemma 3.3.15. If two projective bundles over P1 are isomorphic as (abstract) vari-
eties, then they are isomoprhic as projective bundles.

Proof. Let PE and PF be two projective bundles over P1 of rank r− 1 that are isomor-
phic as varieties. We prove the thesis by induction on the rank of the bundles.
If r = 1, by corollary 3.3.11 PE bundles' PF ' P1.
If r = 2, the thesis follows by the classification of rational ruled surfaces ([18, pg. 372]).
Let r ≥ 3 and let ϕ : PE → PF be an isomorphism as varieties: it is enough to prove
that ϕ maps the fibers of the bundle projection ρE onto the ones of ρF . Given P ∈ P1,
we consider the fiber (PE)P of ρE in P and the composition

(PE)P
ϕ−→ PF ρF−→ P1

But (PE)P ' Pr−1, hence the above map is constant, since every map PN → P1 with
N > 1 is so. This concludes.

We now exhibit some embeddings of projective bundles over P1 in a projective space
PN . Let PE a projective bundle of rank r − 1 over P1 where E = ⊕r

i=1O(ai).
Let us assume 0 < a1 ≤ . . . ≤ ar. Consider N ∈ N large enough such that:

• PN contains the Veronese variety νai(P1) for all i = 1 : r;

• given ψi : P1 νai→ νai(P1)→ PN for all i = 1 : r, it holds

L(Imψi) ∩ L
( ⋃
j 6=i

Imψj

)
= ∅ ,∀i (3.9)

where L(Imψi) denotes the linear span of Imψi in PN .
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Remark 3.3.16. From (3.9) it follows that with a suitable choise of coordinates in PN
we may assume

ψi([x : y]) = [0 : . . . : 0︸ ︷︷ ︸
i+
∑

j<i
aj

: xai : . . . : yai : 0 : . . . : 0] , ∀i = 1 : r

We set
P (a1 . . . ar) =

⋃
z∈P1

L
(
ψ1(z), . . . , ψr(z)

)
(3.10)

Clearly P (a1 . . . ar) is a projective bundle of rank r − 1 over P1 with fibers(
P (a1 . . . ar)

)
z

= L
(
ψ1(z), . . . , ψr(z)

)
' Pr−1 , ∀z ∈ P1

Moreover, by remark 3.3.16 it can be covered by the trivialization

ϕ0 : U0 × Pr−1 ' C× Pr−1 −→ χ−1(U0)
(s, [t1 : . . . : tr]) 7→ [t1 : t1s : . . . : t1sa1 : t2 : . . . : trsar ]

and the complementary one ϕ1 : U1 × Pr−1 → χ−1(U1). Thus it immediately follows:

Corollary 3.3.17. P (a1 . . . ar)
bundles' PE .

By starting from the bundle P (a1 . . . ar) we can define a new variety which will help
us in the study of the singular part Sing(V (P)). Let L0 ⊂ PN be a linear subspace of
dimension a0 ≥ 0 such that

L0 ∩ L
(
P (a1 . . . ar)

)
= ∅

We define the join variety of dimension r + a0 + 1

J(a1 . . . ar; a0) =
⋃

x∈P (a1...ar)
y∈L0

L(x, y) ⊆ PN (3.11)

Remark 3.3.18 (Schematical singularity in a join variety).

• J(a1 . . . ar; a0) is (schematically) non-singular if and only if J(a1 . . . ar; a0) is linear
if and only if r = a1 = 1, that is J(1; a0) = L(P1, L0).

• If J(a1 . . . ar; a0) is (schematically) singular, then it has singularity in L0.

We recall that we make distinction between being schematically singular and being
singular in the sense of remark 3.3.2: indeed in proposition 3.3.20 we will see that
Sing(V (P))4 can have components isomorphic to a join variety but not necessarily
schematically singular (see the pencil [; 1; ] in example 3.3.24).

4in the sense of remark 3.3.2
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We can determine when two join varieties are isomorphic [10, Lemma 1.5].

Lemma 3.3.19. J(a1 . . . ar; a0) ' J(b1 . . . bs; b0) ⇐⇒ r = s and ai = bi ∀i = 0 : r.

Note: A join variety J(a1 . . . ar; a0) is never a projective bundle over P1.

3.3.3 From Sing(V (P)) to minimal indices

Let P = µA1 + λQ2 be a pencil of quadrics with [Q1] 6= [Q2] ∈ PW and Segre symbol

Σ(P) =
[
(e1

1, . . . , e
1
r1) . . . (ek1, . . . , ekrk); εg+1, . . . , εp; g

]
Let Sing(V (P)) be the singular part of the complete intersection Q1 = Q2 = 0 in the
sense of remark 3.3.2 (we do not get tired to underline it!). The following result tells
us that the geometric informations with respect to the minimal indices of the pencil
are hidden into the components of Sing(V (P)) [10, Lemma 2.5].

Proposition 3.3.20. In the above notations, let k = k −#{i | ri = eiri = 1}. Then
Sing(V (P)) has at least t components S1, . . . ,St (with reduced structure) where

t =


k if p = g = 0 (no minimal indices)
max{k, 1} if p = g > 0 (only zero minimal indices)
k + 1 if p > g (there are non-zero minimal indices)

Moreover, up to permutation of the Si’s, it holds:

(i) each Si is either a linear subspace of dimension di = ri + p− 1 (for eiri > 1) or a
quadrics of dimension di − 1 and corank di + 1−#{j | eij = 1} (for eiri = 1).

(ii) If p > g (i.e. there are non-zero minimal indices), then in addition St = Sk+1 is
either a projective bundle of type P (εg+1 . . . εp) (for g = 0) or a join variety of
type J(εg+1 . . . εp; g − 1) (for g > 0).

Remark 3.3.21. In [10] Dimca stated that in the above proposition the t components
were the irreducible ones but this is not true in general: Newstead5 remarked that such
components could be reducible. In this work we also notice this when studying the
pencils of quadrics in P2 (see example 3.3.24): indeed by proposition 3.3.20 the pencil
[(1 1) 1] has t = 1 but from table (3.3) we know that its base locus has two irreducible
singular components (namely, the two double points). So it is important to keep in
mind that the components S1, . . . ,St in proposition 3.3.20 may be not irreducible, hence
one may refine them. However, as Newstead noticed, the next final result still holds.

5Mathematical Review MR0708627 (85e:14011), report to [10]
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Proposition 3.3.20 fills out all the informations in the Segre symbol of the pencil with
respect to the minimal indices. Thus we can conclude the geometric classification of
pencils of quadrics.

Theorem 3.3.22. Two pencils of quadrics P and P ′ are equivalent (up to GL-action)
if and only if

(i) the lines LP , LP ′ ⊂ PW have similar positions;

(ii) the irreducible components of Sing(V (P)) and Sing(V (P ′)) are isomorphic.

Proof. The “if” condition directly follows by propositions 3.3.4 and 3.3.20.
Let us prove the “only if” condition. By proposition 3.3.4 the hypothesis (i) implies
that the two pencils have same continuous moduli, same multiplicities (of the roots)
and same number of minimal indices p = p′, hence they have Segre symbols

Σ(P) =
[
(e1

1, . . . , e
1
r1) . . . (ek1, . . . , ekrk); εg+1, . . . , εp; g

]
Σ(P ′) =

[
(e1

1, . . . , e
1
r1) . . . (ek1, . . . , ekrk); ε′g′+1, . . . , ε

′
p; g′

]
By hypothesis (ii) the singular parts of the base loci of the two pencils have the same
number of irreducible components, hence by proposition 3.3.20 either p−g = p−g′ = 0
(i.e. both pencils have no non-zero minimal indices) or p − g, p − g′ > 0 (i.e. both
pencils have non-zero minimal indices). In the first case we have p = g = g′ and we
conclude; in the latter case we have p > g, g′, hence by proposition 3.3.20(ii) it holds
either (for g = g′ = 0)

P (εg+1 . . . εp) ' St
hp
' S ′t ' P (ε′g′+1 . . . ε

′
p) (3.12)

or (for g, g′ > 0)

J(εg+1 . . . εp; g − 1) ' St
hp
' S ′t ' J(ε′g′+1 . . . ε

′
p; g′ − 1) (3.13)

If g = g′ = 0, by lemma 3.3.15 the isomorphism (3.12) is actually an isomorphism of
projective bundles and by corollary 3.3.17 we have

P
( p⊕
i=1
O(εi)

)
' St ' S ′t ' P

( p⊕
i=1
O(ε′i)

)

hence by 3.3.14 there exists M ∈ Z such that εi− ε′i = M for all i, but by the restraints
in (2.14) it must be εi = ε′i for all i, that is the thesis.

Else if g, g′ > 0, by lemma 3.3.19 the equation (3.13) implies g = g′ and εi = ε′i for
all i and this concludes.
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Remark 3.3.23. It is worth underlining that regular pencils may have a singular part
Sing(V (P)) too. The number of its irreducible components is lower-bounded by t = k.

Example 3.3.24 (Projective plane, singularities of base loci). By remark 3.3.8 in P2

the position of the line LP is enough to determine the whole Segre symbol even for
singular pencils (table 3.4). However we now analyze Sing(V (P)) for all pencils in the
plane.

Let P be the pencil with Segre symbol [; 1; ]: from table 3.4 we know its base locus
V (P) is given by the line (x) and the simple point (y, z). By proposition 3.3.20 we
know that Sing(V (P)) has at least one component (since p = 1 > g = 0, k = 0 and
t = k + 1 = 1): let Sing(V (P)) = S1. Since g = 0, by proposition 3.3.20(ii) it follows
that S1 is isomorphic to the projective bundle

S1 ' P (ε1) = P (1) = P1

hence it is a projective line (actually, the line (x)).
The two remaining pencils have both Segre symbol of type [∗; ; 1], that is p = g = 1:

by proposition 3.3.20 the number of irreducible components of Sing(V (P)) is at least
t = max{k, 1} = 1 for both pencils. Neverthless the two varieties are not isomorphic
by proposition 3.3.20(i): for [1 1; ; 1] the singular part has dimension ri + p − 2 = 0,
in fact it is the quadruple point (x2, y2); for [2; ; 1] the singular part has dimension
ri + p− 1 = 1 and it is the line (x).

By remark 3.3.23 we know that every regular pencil in P2 has at least t = k singu-
lar irreducible components. By table 3.3 we know that, when a singularity exists, it
is 0-dimensional: indeed by computing such dimensions by proposition 3.3.20(i) one
always gets dimension 0. Moreover, the components obtained by proposition 3.3.20 are
irreducible for all regular pencils but [(1 1) 1] (see remark 3.3.21).
In the following table we resume the informations about Sing(V (P)) for all pencils in
P2: the last column comes from a schematic study as in tables 3.3 and 3.4.

Σ(P) k t di Sing(V (P))
[1 1 1] 0 0 ∅
[2 1] 1 1 (irred.) 0 one double point

[(1 1) 1] 1 1 (reducible) 0 two double points
[3] 1 1 (irred.) 0 one triple point

[(2 1)] 1 1 (irred.) 0 one (curv.) quadruple point
[; 1; ] 0 1 (reducible) 1 a line and a disjoint point

[1 1; ; 1] 0 1 (irred.) 0 one (non-curv.) quadruple point
[2; ; 1] 1 1 (reducible) 1 a line with embedded double point

(3.14)
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Remark 3.3.25. By remark 3.3.8 we know that in P2 and P3 the position of the line
LP of a given pencil of quadrics P completely determines its Segre symbol Σ(P). Since
the components of Sing(V (P)) given by proposition 3.3.20 are (schematically) reduced,
they are not enough to completely determine the pencil up to equivalence: indeed from
table (3.14) it is clear that the components Dimca refers to are just 0-dimensional and
by proposition 3.3.20 we can not distinguish neither the number nor the multiplicity of
such singular points.
But if one looks at the base locus V (P) with its projective scheme structure (as we did
for table (3.3)), then for P2 the base locus is enough as well to completely determine the
pencil up to equivalence: indeed we already discussed the multiplicities of the singular
points in (3.3) and (3.4). The same holds for regular pencils in P3 as it follows by tables
(3.6) and (3.7).



Chapter 4

Tensor rank decomposition

In this chapter we introduce different notions of rank for tensors and the
algebraic-geometric objects related to them. In the first section we show how
the notion of rank changes from V1 ⊗ V2 to V1 ⊗ . . . ⊗ Vd for d ≥ 3 and we
define border and symmetric rank. In the second section we focus on tensors
in K2 ⊗Km ⊗Kn, called 2-slice tensors, we introduce the GL-equivalence and
we unveil that these tensors correspond to matrix pencils. In this perspective
the Kronecker form allows to determine their ranks and we show this in two
different ways: by a direct combinatorial approach and by applying the discrete
Fourier transform. In the last section we determine the partially-symmetric
rank of tensors in K2 ⊗ Sym2(Km+1) which are pencils of quadrics in PmK .

Let K be an algebraically closed field with characteristic 0.
We will work with finite dimensional vector spaces over K.

4.1 Ranks of tensors

4.1.1 Rank, multilinear rank and Segre varieties

The case V ⊗W . Let us fix V ' Km and W ' Kn and let us consider their tensor
product V ⊗W . We recall that the decomposable tensors are the ones in Im(g : V ×W →
V ⊗W ). We use these tensors to define the rank over V ⊗W .

Proposition 4.1.1. Let T = ∑
i,j aijvi ⊗ wj ∈ V ⊗W \ {0}. Then

T is decomposable ⇐⇒ Rk(aij) = 1

Proof. We note that Rk(aij) = 1 if and only if aij = xiyj for i = 1 : m and j = 1 : n
since rank-1-matrices can be always written as product of a column-vector for a row-
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vector:

Rk(aij) = 1 ⇐⇒ (aij) =


x1
...

xm

 [y1 . . . yn
]

If T is decomposable then it can be written as T = v ⊗w whose corresponding matrix
MT has rank 1 and by acting with GLm(K)×GLn(K) on V ⊗W we have MT = P (ai,j)Q:
since the rank is invariant under this action we have Rk(aij) = 1. Conversely, if
(ai,j) has rank 1, then ai,j = xiyj for all i, j and for suitable xi, yj ∈ K, hence T =∑
i,j aijvi ⊗ wj = (∑i xivi)⊗ (∑j yjwj) is decomposable.

Since matrices of rank r are sum of r matrices of rank 1, the previous lemma makes
sure the following definition is a good one.

Definition. The rank of a tensor in V ⊗W is the minimum number of decomposable
tensors in which it can be written as sum.

Proposition 4.1.2. The set Im(g) of decomposable tensors in V ⊗W is an algebraic
variety.

Proof. Decomposable tensors have rank 1, thus they are described by polynomial equa-
tions given by their 2× 2 minors.

Remark 4.1.3. Since g−1(0) =
(
V × {0}

)
∪
(
{0} × W

)
we can (well) define the

projective version of tensor product as

Pg : PV × PW → P(V ⊗W )
([v], [w]) 7→ [v ⊗ w]

Moreover, since ∀v⊗w 6= 0 it holds g−1(v⊗w) ' K×, the map Pg is injective: actually
this is an embedding, called Segre embedding, and its image

Im(Pg) = Seg(PV × PW ) ⊂ P(V ⊗W )

is a projective variety, called Segre variety, defined by the homogeneous quadrics
given by 2 × 2 minors. These definitions will be extended to a general tensor product
V1 ⊗ . . .⊗ Vd.

Consider the isomorphism of K-vector spaces V ⊗ W ' HomK(V ∨,W ): let f ∈
HomK(V ∨,W ) and T ∈ V ⊗W corresponding each other via the above isomorphism.

Proposition 4.1.4. Let Rk(f) be the dimension of Im(f) as linear map (or equivalently
the rank of f seen as matrix) and let Rk(T ) be the rank of the tensor as minimum
number of decomposable summands. Then

Rk(f) = Rk(T )
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Proof. Let Rk(T ) = R and let T = ∑R
i=1 vi ⊗ wi be sum of R decomposable tensors.

Since each decomposable tensor vi ⊗ wj corresponds to a rank-1 matrix, the tensor T
corresponds to a sum of R rank-1 matrices, hence Rk(f) ≤ R. Conversely, by Gaussian

elimination A · f ·B =
[
IRk(f) 0

0 0

]
for suitable A,B matrices, hence f is sum of Rk(f)

rank-1 matrices, hence R ≤ Rk(f).

The case V1⊗. . .⊗Vd for d ≥ 3. Let V1, . . . , Vd be K-vector spaces with dimK Vi = mi

and let V1⊗, . . .⊗Vd be their tensor product. We start by defining the rank of a tensor
and by characterizing the decomposable tensors.

Definition. The rank of a tensor in V1 ⊗ . . .⊗ Vd is the minimum number of decom-
posable tensors in which it can be written as sum. In particular, decomposable tensors
have rank 1.

We recall that V1⊗. . .⊗Vd ' HomK(V ∨1 ⊗. . .⊗V̂ ∨i ⊗. . .⊗V ∨d , Vi) for all i = 1 : d, where
the hat denotes the factor is missing: this identification is given by corresponding to a
tensor its flattening with respect to Vi of the coordinate matrix. Hence for all i = 1 : d
each tensor T ∈ V1 ⊗ . . . ⊗ Vd corresponds to a linear map ϕT,i ∈ HomK(V ∨1 ⊗ . . . ⊗
V̂ ∨i ⊗ . . .⊗ V ∨d , Vi).

We have to remark one interesting thing: if in the case d = 2 the isomorphisms
V ⊗ W ' HomK(W∨, V ) ' HomK(V ∨,W ) leave the rank unchanged (since in the
second isomorphism we are just transposing), in the more general case d ≥ 3 the
isomoprhisms V1 ⊗ . . . ⊗ Vd ' HomK(V ∨1 ⊗ . . . ⊗ V̂ ∨i ⊗ . . . ⊗ V ∨d , Vi) for all i = 1 : d
may let the rank change between the different flattenings. Hence it makes sense to give
another definition of rank of a tensor.

Definition. Let T ∈ V1 ⊗ . . . ⊗ Vd be a tensor and for all i = 1 : d let Ti be the
flattening of T with respect to Vi, i.e. the hypermatrix corresponding to ϕT,i : V ∨1 ⊗
. . .⊗ V̂ ∨i ⊗ . . .⊗ V ∨d → Vi. We define the multilinear rank (or multi-rank) of T as

multRk(T ) = (Rk T1, . . . ,Rk Td) =
(

dim Im(ϕT,1), . . . ,dim Im(ϕT,d)
)

Example 4.1.5. Consider the tensor in the example 1.2.2:

T = u1 ⊗ v1 ⊗ w1 + u2 ⊗ v2 ⊗ w1

We explicited its flattenings and it is clear that its multi-rank is multRk(T ) = (2, 2, 1)
while its rank is 2.

We note that, while for d = 2 it holds Rk(T ) ≤ min(dimV1, dimV2), for d ≥ 3 the
previous inequality does not hold anymore: in general Rk(T ) may be larger than dimVi
for all i = 1 : d (see table (4.2)). However if multRk(T ) = (1, . . . , 1), then Rk(T ) = 1
as declared in the following result.
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Proposition 4.1.6. A tensor T ∈ V1⊗ . . .⊗Vd is decomposable if and only if ∀i = 1 : d
the corresponding map ϕT,i : V ∨1 ⊗ . . .⊗ V̂ ∨i ⊗ . . .⊗ V ∨d → Vi has rank 1.

Proof. We note that, if the condition of having rank 1 is verified for d− 1 values of i,
then it is verified for the d-th value.
If T is decomposable, then T = v1⊗. . .⊗vd and for all i = 1 : d we have Im(ϕT,i) ⊆ 〈vi〉.
Conversely, if dim Im(ϕT,i) = 1 for all i = 1 : d, we get vi ∈ Vi such that 〈vi〉 = Im(ϕT,i).
We claim that T = v1⊗ . . .⊗ vd up to scalar. For all i we extend vi to a basis of Vi and
we represent each ϕT,i as flattening of T with respect to these basis: by construction
of vi each flattening has only one non-zero coordinate in the first entry, hence T has
rank 1 and T = v1 ⊗ . . .⊗ vd.

Corollary 4.1.7 (Segre theorem). The set of decomposable tensors

Seg(PV1 × . . .× PVd) = Im
(
Pg : PV1 × . . .× PVd → P(V1 ⊗ . . .⊗ Vd)

)
is an algebraic variety, called Segre variety.

Proof. The set of decomposable tensors is determined by the equations given by the
vanishing of all 2× 2 minors in the flattenings.

Even if in general the multi-rank does not tell us the exact rank of a given tensor, it
gives us some bounds.

Lemma 4.1.8. Let T ∈ V1⊗ . . .⊗Vd be a tensor with multRk(T ) = (r1, . . . , rd). Then
for all i, j = 1 : d (even i 6= j) it holds

ri ≤ Rk(T ) ≤
∏
k 6=j

rk

Proof. Let r = Rk(T ). We write T as sum of decomposables

T =
∑
h=1:r

v
(1)
h ⊗ . . .⊗ v

(d)
h

where v(i)
h ∈ Vi. For all i = 1 : d let Ti be the flattening of T with respect to Vi

Ti : V ∨1 ⊗ . . .⊗ V̂ ∨i ⊗ . . .⊗ V ∨d −→ Vi

Then Im(Ti) ⊆ 〈v(i)
1 , . . . , v

(i)
r 〉, hence ri ≤ r. Moreover, the above restraint tells us we

can express T using only ri elements of a basis in Vi for all i = 1 : d: hence, up to
fixing all i = 1 : d except j ∈ {1, . . . , d} and joining the summands in Vj with respect
to the ∏k 6=j rk elements in V1 ⊗ . . .⊗ V̂j ⊗ . . .⊗ Vd, we can write T as sum of ∏k 6=j rk
decomposable tensors, that is r ≤ ∏k 6=j rk.
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Note: We said that for d = 2 the rank of T is invariant when T is seen as homomorphism
from the dual of a space to the other space. This comes out from the above lemma too:
indeed if d = 2 the lemma says that r1 ≤ r ≤ r2 and r2 ≤ r ≤ r1, hence r = r1 = r2.

Corollary 4.1.9. If Rk(Ti) = 1 for all i but a j ∈ {1, . . . , d}, then Rk(Tj) = Rk(T ) = 1.

The case Ka⊗Kb⊗Kc. We now focus on the case d = 3: it is rich enough to analyze
differences from the case d = 2 but even simple enough to make counts by dirting our
hands.
Given T ∈ Ka ⊗Kb ⊗Kc, by lemma 4.1.8 we know that its multi-rank satisfies

Rk(Ti) ≤ Rk(Tj) Rk(Tk) ∀i, j, k ∈ {a, b, c} (4.1)

Obviously we have the additional conditions

Rk(Ta) ≤ a , Rk(Tb) ≤ b , Rk(Tc) ≤ c

One natural question is: given (r1, r2, r3) ∈ N3 a triple of natural numbers satisfying
the condition (4.1), does exist a tensor T (in a suitable tensor product space) such that
multRk(T ) = (r1, r2, r3)? In 2011 Carlini and Kleppe answered affirmatively [8]:

Theorem. The conditions (4.1) are necessary and sufficient for the existence of a T

having prescribed multi-rank.

4.1.2 Border rank and secant varieties

We start from an example.

Example 4.1.10. Consider in K2 ⊗K2 ⊗K2 the tensor

T = (a1 + a2)⊗ b1 ⊗ c1 + a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1

T has rank 3 but it can be approximated by rank-2 tensors:

T (ε) = 1
ε

[
(ε− 1)a1 ⊗ b1 ⊗ c1 + (a1 + εa2)⊗ (b1 + εb2)⊗ (c1 + εc2)

]
This means that T is not a rank-2 tensor but it is the limit of rank-2 tensors, hence it
is in some closure of the latter ones.

Definition. A tensor T has border rank r if it is limit of rank-r tensors but it is not
a limit of rank-s tensors for any s < r. We denote the border rank of T by Rk(T ). In
particular, Rk(T ) ≤ Rk(T ).

The notion of border rank is related to the following variety.
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Definition. Let X ⊂ PN be an algebraic variety. Its r-th secant variety σr(X) is
the Zariski closure of all points in PN which are linear combination of r points from X:

σr(X) = {
r∑
i=1

Pi | Pi ∈ X} =
⋃

P1,...,Pr∈X
〈P1, . . . , Pr〉

The secant varieties of an algebraic variety X ⊂ PN form an ascending chain

X = σ1(X) ⊆ . . . ⊆ σR(X ) ⊆ . . .

If the chain stabilizes at PN , the minimum R such that σR(X) = PN is said the generic
rank of X.

Now let X = Seg(PV1 × . . .× PVd) be the Segre variety of PV1 ⊗ . . .⊗ PVd. Then its
r-th secant variety is

σr(Seg(PV1 × . . .× PVd)) = {[T ] ∈ P(V1 ⊗ . . .⊗ Vd) | Rk(T ) ≤ r}

As observed in the previous example, by working with secant varieties we work with
a Zariski closure, hence there are tensors which are limit of rank-r tensors but that can
have a higher rank.

The case K2⊗K2⊗K2. We now present the classification of tensors in K2⊗K2⊗K2

with respect to their rank r and multi-rank (r1, r2, r3).

symbols r1 r2 r3 r representatives
A 1 1 1 1 a0 ⊗ b0 ⊗ c0
B1 1 2 2 2 a0 ⊗ b0 ⊗ c0 + a0 ⊗ b1 ⊗ c1
B2 2 1 2 2 a0 ⊗ b0 ⊗ c0 + a1 ⊗ b0 ⊗ c1
B3 2 2 1 2 a0 ⊗ b0 ⊗ c0 + a1 ⊗ b1 ⊗ c0
W 2 2 2 3 a0 ⊗ b0 ⊗ c1 + a0 ⊗ b1 ⊗ c0 + a1 ⊗ b0 ⊗ c0
G 2 2 2 2 a0 ⊗ b0 ⊗ c0 + a1 ⊗ b1 ⊗ c1

(4.2)

Clearly the tensors of types A,B1, B2 and B3 are forced to be the ones of such multi-
ranks and ranks because of the conditions (4.1). We note that the tensor in example
4.1.10 is a representative for the class W . This classification can also be obtained by
the Kronecker form of pencils as we will see in the next sections (see table (4.12)).

4.1.3 Symmetric rank and Veronese varieties

Proposition 4.1.11. The locus of decomposable symmetric tensors

νd(PV ) =
(

Seg(PV × . . .× PV )
)
∩ P(Symd V )

is isomorphic to PV and it is called d-Veronese variety of PV .
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Proof. The isomorphism is given by the d-th Veronese map

νd : PV −→ P(Symd V )
[v] 7→ [v⊗d]

which in coordinates is [x0 : . . . : xm] 7→ [xd0 : xd−1
0 x1 : . . . : xm−1x

d−1
m : xdm].

Since hyperplanes in P(Symd V ) define degree-d polynomials on PV , the Veronese
varieties give the following geometric reinterpretation:

Proposition 4.1.12. The d-th Veronese variety is not contained in a hyperplane.

Proof. If it was so, the hyperplane would induce the zero polynomial, hence the coeffi-
cients over any infinite field would be zero, but this is a contraddiction in the projective
space.

Corollary 4.1.13. Any homogeneous polynomial f ∈ Symd V has decomposition of
the form

f =
r∑
i=1

cil
d
i

where li are linear forms and ci ∈ K. When the number r of summands is as minimum
as possible, the decomposition is said to be the Waring decomposition of f .

Note: If K = C we may assume f = ∑r
i=1 l

d
i , that is ci = 1 for all i.

Definition. The symmetric rank of a homogeneous polynomial (or equivalently, of
a symmetric tensor) f ∈ Symd V is

symRk(f) = min
{
r
∣∣∣ f =

r∑
i=1

cil
d
i

}

Note: symRk(f) = 1 ⇐⇒ f ∈ νd(PV ) ⇐⇒ f = ld.

Question: given f ∈ Symd V , how to detect if f = ld?
We observe that f = ld if and only if ∂f

∂xi
are two by two linearly dependent, that is

if and only if the matrix whose rows are given by the coefficients of these partials has
rank 1.
To light up the notation let us write ∂i instead of ∂

∂xi
. Then ∂i are the coordinates on

(Symd V )∨ dual to the coordinates xi on V , that is ∂ixj = δij .
Consider the map (

Syme V
)∨
⊗ Symd V −→ Symd−e V

(∂, f) 7→ ∂ · f
(4.3)
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hence, by fixing f , the map

Ce,f :
(

Syme V
)∨

−→ Symd−e V

∂ 7→ ∂ · f
(4.4)

Definition. The map

Ce,f : Syme V ∨ −→ Symd−e V

g 7→ g · f

is called e-th catalecticant map for f .

Note: For e = 1 we have the flattening C1,f : V ∨ → Symd−1 V .

Proposition 4.1.14. Let f ∈ Symd V . Then f = ld ⇐⇒ Rk(C1,f ) = 1.

Proof. If f = ld, then C1,f (∂i) = ∂i(ld) = d(∂il)ld−1, hence Im(C1,f ) = 〈ld−1〉 has
dimension 1. Conversely, if Rk(C1,f ) = 1, then there exist λ0, . . . , λm ∈ K such that
0 = ∑m

i=0 λi∂if =
(∑

λi∂i
)
f , then by transposing C1,f we have ∂f = c · l for some

linear form l and some c ∈ K. Up to acting by GL(V ) we may assume l = x0: then
only the monomials xd0 can appear in f otherwise by applying ∂ there would be more
than x0 in l. Then f = ld.

The rank of C1,f is the minimum number of variables such that f can be written in
after a linear change of coordinates: it is said essential rank of f .

Corollary 4.1.15. Let f ∈ Symd V . Then Rk(C1,f ) ≤ symRk(f).

Remark 4.1.16. We have to emphasize that symmetric rank and rank of a symmetric
tensor are different: the first one is about the decomposition of f in Symd V , the latter
in V ⊗d. In general, given f ∈ Symd V , it holds Rk(f) ≤ symRk(f). However for
dimV = 2 equality always holds.

4.2 GL-equivalence in K2 ⊗Km ⊗Kn

Now we focus on tensors in K2 ⊗ Km ⊗ Kn. In the perspective of tensors as cube-
matrices, the 2×m× n-tensors are said 2-slice tensors of size m× n and so they can
be represented (with respect to a given basis) by a cube-matrix given by two matrices
of size m× n suitably put parallel to each other: for instance in the previous example
we considered a 2-slice tensor of size 2. But these 2-slice tensors are not a novelty for
us since we met them throughout the previous chapters: indeed 2-slice tensors can be
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seen as projective matrix pencils. Let us better investigate this identification.
Let T ∈ K2 ⊗Km ⊗Kn be a 2-slice tensor of size m× n. Through the identification

K2 ⊗Km ⊗Kn '−→ Bil(Km,Kn;K2)

T corresponds to a unique bilinear map φT : (v, w) 7→ φT (v, w) = (a, b) ∈ K2. With
respect to some basis, such bilinear map φT can be represented by a pair of matrices
(A,B) in (Km×n)2 such that

tv ·A · w = a , tv ·B · w = b

Then we consider the pencil of size m×n defined by this pair of matrices, i.e. µA+λB.

In Chapter 2 we observed that we could extend the group action in (2.1) to

GL2(K)×GLm(K)×GLn(K) −→ Aut
(
Mm×n(K[µ, λ]1)

)
([a b

c d

]
, P,Q

)
7→

(
µA+ λB 7→ P ·

(
(aµ+ bλ)A+ (cµ+ dλ)B

)
·tQ

) (4.5)

by also acting on the variables µ and λ by linear transformation of K2.
Now that we know that matrix pencils can be identified by 2-slice tensors, the action

of the group GL2(K)×GLm(K)×GLn(K) gains the different perspective

GL2(K)×GLm(K)×GLn(K) −→ Aut
(
K2 ⊗Km ⊗Kn

)
(M,P,Q) 7→

(
u⊗ v ⊗ w 7→Mu⊗ Pv ⊗Qw

) (4.6)

or

SL2(K)× SLm(K)× SLn(K) −→ Aut
(
P(K2 ⊗Km ⊗Kn)

)
([M ], [P ], [Q]) 7→

(
[u⊗ v ⊗ w] 7→ [Mu⊗ Pv ⊗Qw]

) (4.7)

where the above actions are defined on the decomposable tensors and extended by lin-
earity.

Let us show that the actions defined on tensors and on pencils respectively are com-
patible with the correspondence between these two objects: actually it is enough to
restrict our attention only to the action of GLm(K)×GLn(K) on Km⊗Kn since GL2(K)
acts just on the component in K2 of the tensor (and just on the variables defining the
pencil). Moreover we can choose to fix the canonical basis (ei)i=1:m and (ei)i=1:n for
Km and Kn respectively, and the canonical basis (Eij) for Mm×n(K). Thus we ask for
the following diagram to commute:
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u⊗ w =
∑
i,j Tijei ⊗ ej T = (Tij)

Pu⊗Qw P · T ·tQ

y y

Let v ⊗ w = (∑s vses)⊗ (∑twtet) = ∑
s,t vswtes ⊗ et, hence

v ⊗ w ←→ T = (Tst) = (vswt) =
∑
s,t

vswtEst

By acting on T by (P,Q) we obtain

P · T ·tQ = P ·
(∑
s,t

vswtEst
)
·tQ =

∑
s,t

vswt(P · Est ·tQ)

=
∑
s,t

vswt
(∑
i,j

(P · Eij ·tQ)ijEij)
)

=
∑
s,t

vswt
(∑
i,j

(∑
p,q

Pip(Est)pq(tQ)qj
)
Eij
)

=
∑
s,t

vswt
(∑
i,j

(Pis(tQ)tj)Eij
)

=
∑
i,j

(∑
s,t

PisvsQjtwt
)
Eij

=
∑
i,j

(
(Pv)i(Qw)j

)
Eij ←→ Pv ⊗Qw

and this concludes.

Definition. Two 2-slice tensors T1 and T2 of size m×n are said to be GL-equivalent
if they are in the same orbit with respect to the group action (4.6). Equivalently, two
pencils µ1A1 + λ1B1 and µ2A2 + λ2B2 of size m × n are said to be GL-equivalent
if they are in the same orbit with respect to the group action (4.5). We denote this
equivalence by

T1
GL∼ T2 , µ1A1 + λ1B1

GL∼ µ2A2 + λ2B2

Note: We defined λ-equivalence for λ-matrices. By homogenizing we may easily define
(µ, λ)-equivalence in the same way: two (µ, λ)-matrices of size m × n are said to be
(µ, λ)-equivalent if they are in the same orbit of the group action

GLm(K[µ, λ])×GLn(K[µ, λ]) −→ Aut
(
Mm×n(K[µ, λ])

)
(P (µ, λ), Q(µ, λ)) 7→

(
A(µ, λ) 7→ P (µ, λ) ·A(µ, λ) ·tQ(µ, λ)

) (4.8)
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It is quite natural to ask ourselves how the three equivalences we defined for pen-
cils behave with respect to each other: of course strict equivalence implies (µ, λ)-
equivalence, but we have also already noticed that strict equivalence implies GL-
equivalence since the equivalent classes with respect to strict equivalence are defined
by the orbit of the action of the subgroup {I2} × GLm(K) × GLn(K); we also re-
call that by proposition 2.1.2 if µA1 + λB1

(µ,λ)∼ µA2 + λB2 are square pencils such
that detBi 6= 0 (i.e. both pencils have no elementary divisor of the form µt), then
µA1 + λB1

◦∼ µA2 + λB2.
Let us convince ourselves the following implications hold for P1,P2 projective pencils:

P1
(µ,λ)∼ P2 P1

◦∼ P2

P1
GL∼ P2

regular, no infinite divisors

++ +

Clearly in general P1
GL∼ P2 doesn not imply P1

◦∼ P2: this holds only if the two pencils
are defined by the same variables µ, λ, that is their equivalence is given by an element
of {I2} ×GLm(K)×GLn(K), but this hypothesis is too strong.
And even if the pencils are regular with no elementary divisors of the form µt, their
being GL-equivalent still does not imply they are strictly equivalent: indeed in general
by acting on K2 (even only by switching µ and λ by

[
0 1
1 0

]
) elementary divisors

change, hence there is not strict equivalence. This also suggests us that the implication
P1

GL∼ P2 ⇒ P1
(µ,λ)∼ P2 fails.

Finally, since invariant polynomials give a complete system of invariants of (µ, λ)-
equivalence and the action of GL2(K) changes them, being GL-equivalent does not even
imply being (µ, λ)-equivalent.

4.2.1 Canonical form of GL-equivalence

In chapter 3 we determined a complete system of invariants of GL-equivalence for
pencils of quadrics (or equivalently for symmetric 2-slice tensors), given by the Segre
symbol of the pencil and a continuous modulus.
Now our goal is to determine a canonical form of GL-equivalence for general 2-slice ten-
sors and to do this we start again from the Kronecker form of a pencil corresponding
to its coordinate matrix (with respect to a given basis).
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Let T ∈ K2 ⊗ Km ⊗ Kn be a 2-slice tensor and let PT : µA + λB be a pencil
corresponding to T . Let DT be the Kronecker form of the pencil PT as in (2.16): since
strict equivalence is a particular case of GL-equivalence, the pencil DT is a good starting
point for our goal; actually the pencil DT gives us the main structure of the canonical
form we are looking for since it comes from the action of the group GLm(K)×GLn(K)
on the last two factors of the tensor space.
What is left is to understand how the action of GL2(K) on the first factor may change
the Kronecker form. But the action of GL2(K) is just a linear transformation of the
variables µ, λ which define the pencil DT : we already engaged this perspective in propo-
sition 2.2.13, when we noticed that we can always assume a pencil to be without ele-
mentary divisors of the form µui (i.e. detB 6= 0) up to apply a linear transformation
over K2.

Let us resume what we have just observed: the canonical form of GL-equivalence of
the 2-slice tensor T is determined by the Kronecker form of the pencil PT (concerning
the action of GLm(K)×GLn(K)) and the possible transformations over P1 (concerning
the action of GL2(K)); the minimal indices (both for rows and columns) are invariant
under the action of GL2(K) since it preserves the singularity of the pencil; moreover
the action of GL2(K) changes the irreducible polynomials which define the elementary
divisors (since it moves the roots of the determinant of PT in P1) but without changing
their multiplicity.

Then we are allowed to talk about the minimal indices of a 2-slice tensor. It only
remains to find an invariant which replaces the elementary divisors since they are clearly
not preserved by the action of GL2(K).
For what observed above, let us assume PT with no elementary divisor of the form
µu. Let {(λ + akµ)w

(k)
j }j,k be its elementary divisors (where w

(k)
j is the multiplic-

ity of λ + akµ in the j-th invariant polynomial). We know that the integers w(k)
j

are invariant under the action of GL2(K), hence under the action of the whole group
GL2(K)×GLm(K)×GLn(K). This allows us to give the following definition.

Definition. The invariant degrees of a 2-slice tensor are the integers {w(k)
j | j, k}.

Corollary 4.2.1. Let T ∈ K2⊗Km⊗Kn be a 2-slice tensor. Then the minimal indices
and the invariant degrees of the tensor are GL-invariant.

In particular, we can define an extended version of the Segre symbol for general 2-
slice tensors simply by making distinction between minimal indices for columns and for
rows.

Definition. The GL-symbol of a 2-slice tensor T (or equivalently, of a matrix pencil
P) is the ordered sequence

S (P) =
[
(w(1)

1 , . . . , w(1)
r1 ) . . . (w(k)

1 , . . . , w(k)
rk

); εg+1, . . . , εp; ηh+1, . . . , ηq; g;h
]

(4.9)
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with the ordering

r1 ≥ . . . ≥ rk , w
(i)
1 ≥ . . . ≥ w

(i)
ri , εg+1 ≤ . . . ≤ εp , ηh+1 ≤ . . . ≤ ηq

where k is the number of distinct roots of the tensor, w(j)
i are their multiplicities, εs

and g are the minimal indices for columns and ηt and h are the ones for rows.

Nevertheless the minimal indices and the invariant degrees are not enough to form a
complete system of invariants for GL-equivalence for 2-slice tensors: indeed in general
some relations between the roots (such as their disposition in the projective space) must
be preserved. We solve this as we did for pencils of quadrics, that is by assigning to
the pencil the continuous modulus of its roots (defined by (3.2)).

However it follows that a canonical form of GL-equivalence of a 2-slice tensor has
associated pencil

0h×g
diag(Rεg+1 , . . . , Rεp ,

tRηh+1 , . . . ,
tRηq)

diag(J
w

(1)
1 ,a1

, . . . J
w

(t)
r ,at

)

 (4.10)

where Rεi and tRηj are as in (2.15) and J
w

(k)
h
,ak

is the Jordan block of size w(k)
h

J
w

(k)
h
,ak

=


λ+ akµ µ

λ+ akµ
. . .

. . . µ

λ+ akµ


Remark 4.2.2. We say a canonical form and not the canonical form since in general we
can not find a canonical sequence of roots {a1, . . . , as} (we can always change them by
a transformation on P1) but only give a class which represent them (i.e. the continuous
modulus).

By remark 4.2.2 we deduce that in general there are infinitely many GL-orbits in
K2 ⊗Km ⊗Kn. However in small dimensions things are so much easier.

4.2.2 GL-orbits in small dimensions

Theorem 4.2.3. The tensor space K2 ⊗Km ⊗Kn has finitely many GL-orbits if and
only if m ≤ 3 or n ≤ 3. In particular, in these cases a canonical sequence of roots is
given by {0, 1,−1}.
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Proof. Let us assume m ≤ 3: then the worst case would be to have three different roots
a1, a2, a3 but we can always find a transformation of P1 which sends two of them to the
values 0, 1 and the third to the infinite point, hence the three of them to 0, 1,−1.
Conversely, let us assume m,n ≥ 4: then it would be enough to consider the case of four
different roots a1, a2, a3, a4 to convince ourselves1 that there are infinite GL-orbits.

We may also wonder which dimension a given GL-orbit in K2 ⊗Km ⊗Kn has. Since
by theorem 4.2.3 the number of orbits is finite only for m ≤ 3 or n ≤ 3, we focus on
tensors in K2⊗K2⊗Kn and K2⊗K3⊗Kn. Moreover, from the correspondence between
2-slice tensors and matrix pencils it makes sense to consider only the cases

m = 2 ∧ n = 2, 3, 4 , m = 3 ∧ n = 3, 4, 5, 6 (4.11)

Given K2⊗Km⊗Kn as in (4.11) and T a tensor in it, the action (4.6) induces the map

γT : GL2(K)×GLm(K)×GLn(K) −→ K2 ⊗Km ⊗Kn

G 7→ G · T

whose image is exactly the GL-orbit of T . By deriving γT in the identity I = (I2, Im, In),
we get the linear map

d(γT )I : gl2(K)× glm(K)× gln(K) −→ K2 ⊗Km ⊗Kn

g 7→ g · T

whose kernel is the Lie algebra of the stabilizer stabGL(T ) and whose rank is the
dimension of orbGL(T ). Hence to compute the dimension of the orbit one may compute

dim
(

orbGL(T )
)

= Rk
(
d(γT )I

)
= 4 +m2 + n2 − dim

(
ker

(
d(γT )I

))
Note: In Ch.6, §2.1 we implement the computation of the orbit dimensions on Macaulay2.

Example 4.2.4. Consider T = λ ⊗ b1 ⊗ c1 ∈ K2 ⊗ K2 ⊗ K2 with pencil
[

0
λ

]
. It

is decomposable, thus we already know its orbit is Seg(P1 × P1 × P1) of dimension 4.
Moreover, if the generic image d(γT )I(T ) = (M,P,Q) · T goes to 0, it means

(M21µ+M22λ)⊗ b1 ⊗ c1 + λ⊗ (P21b0 + P22b1)⊗ c1 + λ⊗ b1 ⊗ (Q21c0 +Q22c1) = 0

that is only if M21 = P21 = Q21 = (M22 +P22 +Q22) = 0, hence dim(ker(d(γT )I)) = 8.

Remark 4.2.5. One can also geometrically determine the projective orbit closure of
each tensor and its projective dimension in P(K2 ⊗ Km ⊗ Kn) (see [6, §6] for details).
The orbits in K2 ⊗K3 ⊗K3 and their dimensions are deeply studied by Parfenov [31].

1with a cross-ratio and homographies argument
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We end this section with a description of all GL-orbits in the cases m = n = 2 (table
(4.12)) and m = n = 3 (table (4.13)): ranks and border ranks in (4.12) follow by table
(4.2) and example 4.1.10, while ranks in (4.13) follow by theorem 4.3.9.

PT dim(orbGL(T )) Rk Rk T symbols[
0

λ

]
4 1 1 λ⊗ b1 ⊗ c1 A[

λ

λ

]
5 2 2 λ⊗ b0 ⊗ c0 + λ⊗ b1 ⊗ c1 B1[

λ µ
]

5 2 2 λ⊗ b0 ⊗ c0 + µ⊗ b0 ⊗ c1 B2[
λ

µ

]
5 2 2 λ⊗ b0 ⊗ c0 + µ⊗ b1 ⊗ c0 B3[

λ µ

λ

]
7 3 2 λ⊗b0⊗c0+λ⊗b1⊗c1+

+µ⊗b0⊗c1
W[

λ

µ

]
8 2 2 λ⊗ b0 ⊗ c0 + µ⊗ b1 ⊗ c1 G

(4.12)

PT dim(orbGL(T )) Rk Rk T[
λ

µ

λ + µ

]
18 3 3 a2⊗b1⊗c1+a1⊗b2⊗c2+

+(a2+a1)⊗b3⊗c3[
λ

λ

µ

]
15 3 3 a2⊗b1⊗c1+a2⊗b2⊗c2+

+a1⊗b3⊗c3[
λ µ

λ

µ

]
17 4 3 a2⊗b1⊗c1+a2⊗b2⊗c2+

+(a1+a2)⊗b3⊗c3+a1⊗b1⊗c2[
λ

λ

λ

]
10 3 3 a2⊗b1⊗c1+a2⊗b2⊗c2+

+a2⊗b3⊗c3[
λ µ

λ

λ

]
14 4 3 a2⊗b1⊗c1+a2⊗b2⊗c2+

+a2⊗b3⊗c3+a1⊗b1⊗c2[
λ µ

λ µ

λ

]
16 4 3 a2⊗b1⊗c1+a2⊗b2⊗c2+

+a2⊗b3⊗c3+a1⊗b1⊗c2+a1⊗b2⊗c3[
λ µ

λ µ

]
14 3 3 a2⊗b1⊗c1+a2⊗b2⊗c2+

+a1⊗b1⊗c2+a1⊗b2⊗c3[
λ

µ λ

µ

]
14 3 3 a2⊗b1⊗c1+a2⊗b2⊗c2+

+a1⊗b2⊗c1+a1⊗b3⊗c2[
λ µ

λ

µ

]
14 4 3 a2⊗b1⊗c1+a1⊗b1⊗c2+

+a2⊗b2⊗c3+a1⊗b3⊗c3

(4.13)

Note: In table (4.13) the tensors which lies in K2⊗K2⊗K2 embedded in K2⊗K3⊗K3

are missing: clearly the dimensions of these orbits changes with respect to the space.
The decompositions are all minimal but the last one, where we have five summands
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but the rank is 4 (see examples 4.3.12 and 4.4.4). Moreover, the border rank is always
3 since the 3-rd secant variety σ3(Seg(P1 × P2 × P2)) fills up the ambient space P17.

dim(orbGL(T ))

6

8

9

10

11

12

13

14

15

16

17

18

orbGL(T )

(
λ

0
0

)
(
λ

µ

0

) (
λ µ

0

)
(
λ

λ

0

)
(
λ

λ

λ

)
(
λ µ

λ

0

)
(
λ

µ

0

)
(
λ

µ

λ

) (
λ µ

λ

)
(
λ

µ λ

µ

) (
λ µ

λ

µ

) (
λ µ

λ µ

) (
λ µ

λ

λ

)

(
λ
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µ

)

(
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λ

µ

)
(
λ µ

λ µ

λ

)
(
λ µ

λ

µ

)

Figure 4.1: Oriented graph of GL-orbits in K2 ⊗K3 ⊗K3

The oriented graph represents the degeneracy relations between the GL-orbits in K2⊗
K3⊗K3: each arrow goes from an orbit to a degenerate one of its. For details we refer
to [31].

Remark 4.2.6. The case K2 ⊗ K2 ⊗ K2 has a remarkable difference with respect to
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other cases K2⊗Km⊗Km for m 6= 2: indeed in the latter ones we have just a symmetry
with respect to the two last factors of the tensor product, while in the case K2⊗K2⊗K2

such symmetry involves all three factors. Namely, for K2 ⊗ K2 ⊗ K2 we may consider
the action by S3 which permutes the three factors: of course this action does not
give a GL-equivalence as the one we previously mentioned, but however it preserves
ranks. Thus B1, B2, B3 in (4.12) are not GL-equivalent but they are all conjugated by
S3-action.

4.3 Rank in K2 ⊗Km ⊗Kn

We are now interested into study the rank of a tensor in K2 ⊗Km ⊗Kn.
Let T ∈ K2⊗Km⊗Kn be a 2-slice tensor and let PT be the associated matrix pencil.

Of course the rank of the tensor is invariant under GL-action, hence we may freely
work with the Kronecker form of the pencil. We may even talk about the rank of the
pencil to be the rank of the corresponding tensor.
First we note that we may assume PT = µA + λB with no identically-zero minimal
indices (i.e. g = h = 0 in (2.17)) otherwise we may restrict to consider T in K2⊗KM ⊗
KN for suitable M < m and N < n. Under this hypothesis the pencil (or the tensor)
is said to be concise: to be precise the definition of conciseness holds more in general
for bilinear forms and the one we gave is just an equivalence when working with pencils
[7]. Clearly the blocks Rε and Jw,a in (2.17) are concise.

Remark 4.3.1. By lemma 4.1.8, if T ∈ K2 ⊗Km ⊗Kn is concise, then Rk(T ) ≥ m,n.

Moreover up to acting by GL2(K) we may assume that there are no elementary
divisors of the form µu. So we consider the Kronecker-Weierstrass form of PT

( p

�
i=1

Rεi

)
�
( q

�
j=1

tRηj

)
�
(
�
j,k

Jwjk,ajk

)
(4.14)

The following lemma allows us to compute the rank of the blocks in (4.14): for a
proof we refer to [7, Ch.19, §2].

Lemma 4.3.2. Let P be a pencil of size m× n with block decomposition
[
P11 P12
0 P22

]
,

where P11,P12,P22 are of size a× b, a× (n− b), (m− a)× (n− b) respectively.

(1) If P22 is concise, then Rk(P) ≥ Rk(P11) + (m− a);

(2) Rk(P11 � P22) ≤ Rk(P11) + Rk(P22);

(3) If P22 is concise and Rk(P22) = max{m− a, n− b}, then equality holds.
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Let P be a matrix pencil with non-zero minimal indices ε1, . . . , εp, η1, . . . , ηq and regular
block K of size N . We define δ(K) to be the number of invariant polynomials of K which
are not squarefree. We define

χ(P) =
p∑
i=1

(εi + 1) +
q∑
j=1

(ηj + 1) +N + δ(K)

Our claim is that χ(P) = Rk(P).

Proposition 4.3.3. Let T ∈ K2 ⊗Km ⊗Kn be a 2-slice tensor with associated pencil
PT = µA+λB. Then Rk(T ) ≤ r if and only if there exist D1, D2 diagonal of size r and
P,Q of size m× r and r× n respectively such that PT = µ(P ·D1 ·tQ) + λ(P ·D2 ·tQ).

Proof. Assume Rk(T ) ≤ r: given (with respect to some basis)

T =
∑
i,j,k

Tijkui ⊗ vj ⊗ wk

it follows that there exist vectors α1, . . . , αr ∈ K2 and β1, . . . , βr ∈ Km and γ1, . . . , γr ∈
Kn such that

Tijk =
r∑
l=1

α
(i)
l β

(j)
l γ

(k)
l

where α(i)
l is the i-th component of the vector αl (idem for β(j)

l , γ
(k)
l ). Then we set

D1 = diag(α(1)
1 , . . . , α(1)

r ) , D2 = diag(α(2)
1 , . . . , α(2)

r ) , P = (β(j)
l )j,l , tQ = (γ(k)

l )l,k

Conversely, it is enough to follow backforward the above argument to conclude.

Proposition 4.3.4. Let Fp be the Frobenius block of size N associated to the invariant
polynomial p(µ, λ). Then Rk(Fp) = χ(Fp).

Proof. Set F = Fpw . By remark 4.3.1, since F is concise, we know that Rk(F) ≥ N .
By the above proposition we know that equality holds if and only if there exist D1, D2
diagonal of size N and U, V of size N such that

F = µCp + λIN = µ(U ·D1 ·tV ) + λ(U ·D2 ·tV )

We may assume D2 = IN . Then Rk(F) = N if and only if Cp is diagonalizable, but
since F has unique invariant polynomial p(µ, λ) this is equivalent to ask for p(µ, λ) to
be squarefree, that is

Rk(F) = N ⇐⇒ δ(F) = 0

Now we claim that Rk(F) ≤ N + 1. Since K is infinite we may shift the polynomial
q(t) defining F by a suitable polynomial c(t) such that q(t) + c(t) has N distinct roots,
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that is δ(Fq+c) = 0 (hence Rk(Fq+c) = N by the above argument). We may rewrite
the pencil as

F = Fq+c +


0 . . . 0 c0λ
...

...
...

0 . . . 0 cN−1λ


But the latter pencil has clearly rank 1, hence by lemma 4.3.2(2) Rk(F) ≤ N + 1.
Thus we conclude that Rk(F) = N + δ(F) = χ(F).

Corollary 4.3.5. Let Jw,a be the Jordan block associated to the elementary divisor
(λ+ aµ)w. Then Rk(Jw,a) = χ(Jw,a) = w + (1− δw1) (δw1 is the Kronecker symbol).

Proposition 4.3.6. Let ε ≥ 1 and let Rε be a minimal column block of size ε× (ε+1).
Then Rk(Rε) = χ(Rε) = ε+ 1.

Proof. Since Rε is concise, by remark 4.3.1 we have Rk(Rε) ≥ ε + 1. Let q(t) be a
polynomial of degree ε with ε distinct roots in K. Then

Rε =

 Fq

0 . . . 0

+


0 . . . 0 q0λ
...

...
...

qε−1λ

0 . . . 0 λ


Since Rk(Fq) = ε and the latter summand has rank 1, by lemma 4.3.2(2) it follows
Rk(Rε) ≤ ε+ 1, hence the equality holds.

Corollary 4.3.7. Let η ≥ 1 and let tRη be a minimal row block of size (η + 1) × η.
Then Rk(tRη) = χ(tRη) = η + 1.

Our goal is to prove that for all 2-slice tensor T it holds Rk(T ) = χ(PT ). In the
previous propositions we computed the rank of each block of the Kronecker form, now
we have to glue them together (by direct-block-sum) and prove that the above equality
still holds. The idea is to reduce to the case of �i≤l J2,a whose rank may be computed
by hand: for a proof we refer to [7, Ch.19, §2].

Proposition 4.3.8. For all l ≥ 1 it holds Rk(�i=1:l J2,a) = 2l + l.

Theorem 4.3.9 (Grigoriev-JàJà). Let T ∈ K2⊗Km⊗Kn and let PT be the associated
pencil with minimal indices ε1, . . . , εp, η1, . . . , ηq and regular part K of size N . Let δ(K)
be the number of its non-squarefree invariant polynomials. Then

Rk(T ) =
p∑
i=1

(εi + 1) +
q∑
j=1

(ηj + 1) +N + δ(K) (4.15)
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Proof. We may assume PT to be in the Kronecker form. We may even assume T to be
concise, thus

PT =
( p

�
i=1

Rεi

)
�
( q

�
j=1

tRηj

)
�
(
�
j,k

Jwjk,ajk

)
By proposition 4.3.6, Rk(Rεi) = εi + 1 (idem for tRηj ), thus by lemma 4.3.2(3)

Rk(T ) = Rk
( p

�
i=1

Rεi

)
+ Rk

( q

�
j=1

tRηj

)
+ Rk

(
�
j,k

Jwjk,ajk

)
=

=
p∑
i=1

(εi + 1) +
q∑
j=1

(ηj + 1) + Rk
(
�
j,k

Jwjk,ajk

)
Hence we may assume PT = �j,k Jwjk,ajk to be regular of size N . By lemma 4.3.2(2)
and proposition 4.3.4 we already know

Rk(PT ) ≤ N + δ(PT )

We want to prove that actually equality holds. Pick a ∈ K such that (λ+ aµ)2 divides
the first δ(PT ) invariant polynomials pδ(PT )| . . . |p1. Then

�
w

Jw,a =
( δ(PT )

�
wk≥2,k=1

Jw,a
)
�
( s

�
i=1

J1,a
)

By corollary 4.3.5 Rk
(
�s
i=1 J1,a

)
= size

(
�s

i=1 J1,a
)

= s, so by lemma 4.3.2(3)

Rk
(
�
w

Jw,a
)

= Rk
( δ(PT )

�
wk≥2,k=1

Jw,a
)

+ Rk
( s

�
i=1

J1,a
)

By iteratively applying lemma 4.3.2(1) we have

Rk
(
�
w≥2

Jw,a
)
≥
( δ(PT )

�
wk≥2,k=1

J2,a
)

+
δ(PT )∑
k=1

(wk − 2) (4.3.8)= δ(PT ) +
δ(PT )∑
k=1

wk

thus

Rk
(
�
w

Jw,a
)
≥ δ(PT ) +

δ(PT )∑
k=1

wk + s = δ(PT ) + size
(
�
w

Jw,a
)

Finally by lemma 4.3.2(1) we conclude that

Rk(PT ) ≥ Rk
(
�
w

Jw,a
)

+ size
(
�
v,b6=a

Jv,b
)
≥ N + δ(PT )
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Remark 4.3.10. In particular, in K2 ⊗ Km ⊗ Km the maximum possible rank of a
tensor is b3m

2 c: in [5] the case for m even is explicitly studied.

Note: It is important to underline that the weight δ(PT ) depends on the number of
non-squarefree invariant polynomials and not on the number of non-squarefree elemen-
tary divisors. We will observe this subtlety in the case of pencils of quadrics in P3 (see
remark 4.5.8).

The Kronecker-Weierstrass form of a pencil does not only allow to compute the rank
of the associated 2-slice tensor but even to give a decomposition which is unique up to
GL2(K)×GLm(K)×GLn(K)-action (or SL2(K)× SLm(K)× SLn(K) if we are working
with P(K2 ⊗ Km ⊗ Kn)). The decomposition of a 2-slice tensor is particularly aestet-
ically beautiful if we assume the tensor to be regular with linear elementary divisors
(i.e. without minimal indices and δ(PT ) = 0).

Corollary 4.3.11. Let T ∈ K2 ⊗ Km ⊗ Km be regular (in the sense of its pencil)
and such that δ(PT ) = 0. Let {λ + aiµ | i = 1 : m} be its elementary divisors (not
necessarily distincts). With respect to a suitable basis, its minimal decomposition is

T =
m∑
i=1

(λ+ aiµ)⊗ vi ⊗ wi

Example 4.3.12. Let T ∈ K2 ⊗K3 ⊗K3 be the 2-slice tensor with associated pencil

PT =

λ+ aµ µ

λ+ aµ µ

λ+ aµ


With respect to a suitable basis we may write a first decomposition of T in five terms:

(λ+ aµ)⊗ v1⊗w1 + (λ+ aµ)⊗ v2⊗w2 + (λ+ aµ)⊗ v3⊗w3 +µ⊗ v1⊗w2 +µ⊗ v2⊗w3

But by theorem 4.3.9 we know that Rk(T ) = 3 + δ(PT ) and, since PT has unique
invariant polynomial (λ + aµ)3, we have δ(PT ) = 1 and Rk(T ) = 3 + 1 = 4. Then
we know that we can optimize the above decomposition in a shorter one of four terms.
However it is not trivial to obtain a decomposition in four summands of the above
tensor: to do so we need to use a decomposition technique based on the discrete Fourier
transform. We will show the solution in the next section (see example 4.4.4).

4.4 Discrete Fourier transform in Kα+1 ⊗Kβ+1 ⊗Kα+β+1

The decomposition of some tensors in Kα+1 ⊗Kβ+1 ⊗Kα+β+1 is strictly connected to
the multiplication of two polynomials of degree α and β. Let us see how.
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Let a(X) = aαX
α + . . . + a0 and b(X) = bβX

β + . . . + b0 be two polynomials and
let c(X) = a(X) · b(X) = cα+βX

α+β + . . . + c0 be their product. Let a ∈ Kα+1, b ∈
Kβ+1, c ∈ Kα+β+1 be the coordinate vectors of a(X), b(X), c(X) respectively. Consider
the polynomial multiplication map

M : Kα+1 ×Kβ+1 −→ Kα+β+1

(a, b) 7→ c

By the universal property of tensor product we have the linear map

M̃ : Kα+1 ⊗Kβ+1 −→ Kα+β+1

a⊗ b 7→ c

and the mutiplication map can be encoded (up to dual) as a tensor

T =
α∑
i=0

β∑
j=0

ai ⊗ bj ⊗ ci+j ∈ Kα+1 ⊗Kβ+1 ⊗Kα+β+1

called multiplication tensor.

Fast Fourier multiplication. Before analyzing how the polynomial multiplication
affects the tensor decomposition let us recall some of its computational-algebraic prop-
erties. The standard polynomial multiplication has complexity of order O(N2) (where
N is the maximum degree of the factors).
A method for polynomial multiplication is the one of evaluation-interpolation: given
a(X) and b(X) of degree α, β respectively and given n = max{α, β}, one chooses (at
least) N = 2n+ 1 distinct values λk ∈ K, evaluates Ak = a(λk) and Bk = b(λk), com-
putes the values Ck = a(λk) · b(λk) and computes the polynomial c(X) interpolating
the values Ck in the point λk; the interpolating polynomial c(X) is the the product
a(X) · b(X).
The complexity of this method is still O(n2) for general values λk, but things get a bet-
ter taste if one properly chooses the values λk: indeed by choosing λk = ζk−1

N (where
ζN is a primitive N -th root of the unity) the complexity decreases to O(n logn). This
faster method is called fast Fourier multiplication and the processes of evaluation and
interolation are known as fast Fourier transform and fast Fourier interpolation [27,
Ch.IX].
The algorithm of fast Fourier multiplication is the following. Let N = 2m be the
smaller power of 2 greater than 2n, ζN be a primitive N -th root of unity and V [ζN ] =
V (1, ζN , . . . , ζN−1

N ) be the Vandermonde matrix. Let A,B,C be the vectors with coor-
dinates Ak = a(ζkN ), Bk = b(ζkN ), Ck = Ak ·Bk respectively. Then:

• evaluation: A = V [ζN ] · a , B = V [ζN ] · b;
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• interpolation: c = N−1V [ζ−1
N ] · C.

Remark 4.4.1. In this algorithm the evaluation and interpolation processes are called
fast because they leverage the choice N = 2m by applying a binary splitting of the
polynomials in their even and odd terms and by iterating the algorithms to them.
Without this splitting we just refer to these processes as discrete (instead of fast).

Remark 4.4.2. The fast Fourier multiplication holds over finite fields Fq with charac-
teristic p 
 2 too: the hypothesis p 6= 2 ensures the existence of N−1 (since N = 2m)
and one may always find a primitive N -th roots of unity ζN in Fq thanks to the Dirichlet
theorem on arithmetic progressions: an algorithmic way is to find a primitive element
in the field Fq.

Application to tensor decomposition. Consider the multiplication tensor

T =
α∑
i=0

β∑
j=0

ai ⊗ bj ⊗ ci+j ∈ Kα+1 ⊗Kβ+1 ⊗Kα+β+1

As we observed at the beginning of the section we may reinterpret it as the polynomial
multiplication

(a0 + . . .+ aαX
α) · (b0 + . . .+ bβX

β) = c0 + . . .+ cα+βX
α+β

Idea: We want to find a decomposition of T in α+ β + 1 summands by applying the
fast Fourier multiplication at a(X) and b(X).

Let us set N = α+β+1 and ζ = ζα+β+1 a primitive N -th root of unity. Let Ak = a(ζk)
and Bk = b(ζk) be the evaluations of a(X) and b(X) in the points {ζk | k = 0 : α+β}.
Let C be the vector with k-th coordinate Ak · Bk. By the fast Fourier multiplication
we have

c = 1
α+ β + 1V [ζ−1] · C

then for i = 0 : α+ β

ci = 1
α+ β + 1

α+β∑
j=0

ζ−ijAjBj = 1
α+ β + 1

α+β∑
j=0

ζ−ij
( α∑
k=0

akζ
kj
)( β∑

k=0
bkζ

kj
)

By going back to the tensor interpretation we have
α∑
i=0

β∑
j=0

ai⊗bj⊗ci+j = 1
α+ β + 1

α+β∑
j=0

[( α+β∑
i=0

ciζ
−ij
)
⊗
( α∑
i=0

aiζ
ij
)
⊗
( β∑
i=0

biζ
ij
)]

(4.16)

that is a decomposition of T in α+β+ 1 decomposable tensors. In particular, we have
proven the following result.
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Corollary 4.4.3. The multiplication tensor inKα+1⊗Kβ+1⊗Kα+β+1 has rank α+β+1.

Example 4.4.4. Let us go back to example 4.3.12, where we exhibited a decomposition
of a tensor T ∈ K2 ⊗ K3 ⊗ K3 with associated pencil a Jordan block J3,a in five
decomposable summands. However theorem 4.3.9 tells us that the rank of T is four.
First of all we extend the tensor T to the tensor T̃ ∈ K2 ⊗ K3 ⊗ K4 with associated
pencil

PT̃ =

λ+ aµ µ

λ+ aµ µ

λ+ aµ µ


The idea is to use the fast Fourier multiplication to decompose T̃ in four decomposable

tensors and then cut the last column to obtain a decomposition of T .
We are in the following setting:

α = 1 , β = 2 , N = 4 , ζ = ζ4 = i

a0 = (λ+ aµ) , a1 = µ , bk = vi−1 ∀k = 1 : 3 , ck = wk−1 ∀k = 1 : 4
and so by (4.16)

T̃ =
1∑

k=0

2∑
j=0

ak ⊗ bj ⊗ ck+j = 1
4

3∑
j=0

[( 3∑
k=0

ck(i)−kj
)
⊗
( 1∑
k=0

ak(i)kj
)
⊗
( 2∑
k=0

bk(i)kj
)]

= 1
4
[
(a0 + a1)⊗ (b0 + b1 + b2)⊗ (c0 + c1 + c2 + c3)+

+ (a0 + ia1)⊗ (b0 + ib1 − b2)⊗ (c0 − ic1 − c2 + ic3)+
+ (a0 − a1)⊗ (b0 − b1 + b2)⊗ (c0 − c1 + c2 − c3)+

+ (a0 − ia1)⊗ (b0 − ib1 − b2)⊗ (c0 + ic1 − c2 − ic3)
]

By rewriting the decomposition of T̃ in terms of λ, µ, vi, wj and by setting c3 = 0, we
have the rank-4 decomposition of T

T =1
4
[
(λ+ (a+ 1)µ)⊗ (v1 + v2 + v3)⊗ (w1 + w2 + w3)+

+ (λ+ (a+ i)µ)⊗ (v1 + iv2 − v3)⊗ (w1 − iw2 − w3)+
+ (λ+ (a− 1)µ)⊗ (v1 − v2 + v3)⊗ (w1 − w2 + w3)+

+ (λ+ (a− i)µ)⊗ (v1 − iv2 − v3)⊗ (w1 + iw2 − w3)
]

Multiplication tensor in K2⊗Kβ+1⊗Kβ+2. Now we fix α = 1 and let β be generic.
Consider the multiplication tensor

T =
1∑
i=0

β∑
j=0

ai ⊗ bj ⊗ ci+j ∈ K2 ⊗Kβ+1 ⊗Kβ+2
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with associated pencil

PT =


a0 a1

. . .
. . .

a0 a1


We know this pencil! Indeed by substituting a0 and a1 with λ and µ respectively

we have a Kronecker singular block Rε with respect to the minimal index for columns
ε = β + 1.
By corollary 4.4.3 and (4.16) we know that Rk(T ) = β + 2 and a decomposition of T
is given by

1
β + 2

β+1∑
j=0

[( β+1∑
i=0

ciζ
−ij
β+2

)
⊗
( 1∑
i=0

aiζ
ij
β+2

)
⊗
( β∑
i=0

biζ
ij
β+2

)]

Then the Kronecker singular block Rβ+1 has rank β+2, as also confirmed by proposition
4.3.6.

Remark 4.4.5 (Cherry-on-the-cake!). By the last two paragraphs it follows that the-
orem 4.3.9 may also be proved by the discrete Fourier transform. Given the Kronecker
form

0h×g �
( p

�
i=g+1

Rεi

)
�

( q

�
j=h+1

tRηj

)
�

(
�
l,z

Jwlz ,alz

)
one may looks at each singular block Rεi (similarly for tRηj ) as a multiplication tensor
Tεi ∈ K2⊗Kεi⊗Kεi+1 and at each regular block Jwlz ,alz as the troncation of a multipli-
cation tensor Twlz ,alz ∈ K2⊗Kwlz ⊗Kwlz+1 (as in example 4.4.4). Thus by the discrete
Fourier decomposition we know the rank of each block and by lemma 4.3.2(3) we get
the rank of the pencil.

4.5 Ranks and GL-orbits in K2 ⊗ Sym2(Km+1)

In the previous sections we showed that 2-slice tensors correspond to matrix pencils
and that the Kronecker form of the latters allows to determine the rank of the former
ones. In this section we work with tensors in K2 ⊗ Sym2(Km+1), called symmetric
2-slice tensors, corresponding to pencils of quadrics.

Note: In chapter 3 we determined the canonical form for GL-equivalence of pencils
of quadrics and we found out that a complete system of invariants is given by the
Segre symbol and the continuous modulus. We also studied such pencils with a par-
ticular focus on the ones in P2 and P3 both algebraically and geometrically. In this
perspective one may reinterpret the Segre classification as the classification of tensors
in K2 ⊗ Sym2(Km+1) up to GL-equivalence.
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4.5.1 Partially-symmetric rank

For tensors in K2 ⊗ Sym2(Km+1) we have to adapt the notion of symmetric rank to
a weaker form. First of all the decomposable tensors in K2 ⊗ Sym2(Km+1) are the
ones of the form u ⊗ l2 where u ∈ K2 and l ∈ Km+1 is a linear form. Geometrically,
the decomposable symmetric 2-slice tensors are the ones in P1 × Pm embedded in
P(K2 ⊗ Sym2(Km+1)) with the sheaf O(1, 2), or equivalently the ones in

Seg(P1 × ν2(Pm)) ⊂ P
(
K2 ⊗ Sym2(Km+1)

)
Definition. The partially-symmetric rank of a symmetric 2-slice tensor T ∈ K2 ⊗
Sym2(Km+1) is the minimum number of decomposable summands of type u ⊗ l2 in
which T decomposes, that is

symRkp(T ) =
{
r
∣∣∣ T =

r∑
i=1

ui ⊗ l2i

}

Note: Since K2 ⊗ Sym2(Km+1) ⊂ K2 ⊗Km+1 ⊗Km+1, as well as for symmetric rank it
surely holds

Rk ≤ symRkp (4.17)

In the following we will go back to the setting of Segre classification (see Chapter
3) and we will study rank and partially-symmetric rank of symmetric 2-slice tensors.
The thread of our study is the following: first we determine the different ranks for the
symmetric blocks

Sεi =
[

0 Rεi
tRεi 0

]
, J̌w,a =


µ λ+ aµ

. .
.

. .
.

µ . .
.

λ+ aµ

 (4.18)

of a Kronecker form, then we deduce the partially-symmetric rank of a symmetric 2-slice
tensor.

Ranks of symmetric singular blocks. Let Sε ∈ K2 ⊗ Sym2(K2ε+1) be the sym-
metric 2-slice tensor defined by a Kronecker singular block as in (4.18). By proposition
4.3.6 we know that both the blocks Rε and tRε have rank ε+ 1, hence

Rk(Sε) = 2ε+ 2

By inequality (4.17) it follows that symRkp(Sε) ≥ 2ε+ 2. Actually equality holds.

Lemma 4.5.1. symRkp(Sε) = Rk(Sε) = 2ε+ 2.
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Proof. Since Rk(Rε) = ε+ 1 there exist A0, . . . , Aε rank-1 matrices such that

Rε(λ, µ) ⊂ 〈A0, . . . , Aε〉

for all λ, µ. For all i = 0 : ε the Bi =
[

0 Ai
tAi 0

]
is symmetric of rank 2 and it holds

Sε(λ, µ) ⊂ 〈B0, . . . , Bε〉

for all λ, µ. Thus symRkp(Sε) ≤ Rk(B0) + . . .+ Rk(Bε) = 2(ε+ 1).

Ranks of symmetric Jordan blocks. Let (λ + aµ)w be an elementary divisor of
a symmetric 2-slice tensor in K2 ⊗ Sym2(Km+1) and let J̌w,a be the corresponding
Kronecker Jordan block as in (4.18). By corollary 4.3.5 we know that

Rk(J̌w,a) = w + (1− δw1)

where δw1 is the Kronecker symbol. The case w = 1 is trivial, thus we assume w > 1,
hence Rk(J̌w,a) = w + 1. By inequality (4.17) it follows that symRkp(J̌w,a) ≥ w +
1. Actually the next lemma will show that equality holds, but first we need some
preliminary.

First of all we note that every symmetric Jordan block J̌w,a as in (4.18) is a matrix
of Hankel type, that is every skew-diagonal is constant:

(J̌w,a)i,j = (J̌w,a)i+k,j−k ∀i ≤ j, k = 0 : j − i

We may represent a Hankel matrix H of size N in the compact form

H = Hank(h1, . . . , hN−1, hN , hN+1, . . . , h2N−1)

where hi is each entry of the i-th ascending skew-diagonal. For instance,

J̌w,a = Hank
(

0, . . . , 0︸ ︷︷ ︸
w−2

, µ, λ+ aµ, 0, . . . , 0︸ ︷︷ ︸
w−1

)

The only two non-zero skew-diagonals of J̌w,a have entries µ and λ + aµ respectively,
which are relatively prime: then, for any fixed finite subset Γ ⊂ K and for any general
vector v ∈ Kw, the polynomial tvJ̌w,av has distinct linear factors none of which equal
to λ+ γµ for any γ ∈ Γ.

Fact 4.5.2. The above property holds for every Hankel matrix whose entries are rela-
tively prime homogeneous polynomials of fixed degree in two variables.
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For all square invertible matrix A of size m and u, v ∈ Km it holds [11, Lemma 1.1]

det(A+ u ·tv) = (1 +tvA−1u) det(A)

and its symmetric form

det(A+ u ·tu) = (1 +tuA−1u) det(A) = det(A) +tuA∗u (4.19)

where A∗ is the cofactor matrix of A defined by (A∗)i,j = (−1)i+j det(Aij) for Aij the
submatrix of A obtained by deleting the i-th row and the j-th column.

The cofactor matrix of J̌w,a is the lower skew-triangular Hankel matrix

(J̌w,a)∗ = −Hank
(

0, . . . , 0︸ ︷︷ ︸
w−1

, (−λ− aµ)w−1, . . . , (−λ− aµ)w−kµk−1, . . . , µw−1
)

Lemma 4.5.3. symRkp(J̌w,a) = Rk(J̌w,a) = w + δw1.

Proof. The case w = 1 is trivial, thus we assume w > 1. The cofactor matrix (J̌w,a)∗
has the property in 4.5.2, thus for a general u ∈ Kw the polynomial tu(J̌w,a)∗u has
distinct factors none of which are equal to (λ + aµ). Moreover, up to rescale u ∈ Kw,
the polynomial

det
(
J̌w,a + µ(u ·tu)

) (4.19)= det(J̌w,a) + µ
(
tu(J̌w,a)u

)
= (λ+ aµ)w + µ

(
tu(J̌w,a)u

)
has distinct linear factors, hence the pencil J̌w,a + µ(u ·t u) is diagonalizable. Since
µ(u ·tu) has rank 1 by construction, it holds

symRkp(J̌w,a) ≤ symRkp(J̌w,a + µ(u ·tu)) + symRkp(µ(u ·tu)) ≤ w + 1

and by inequality (4.17) we conclude.

By lemmas 4.5.1 and 4.5.3 we can conclude the following result.

Theorem 4.5.4. For all pencil of quadrics T ∈ K2 ⊗ Sym2(Km+1) it holds

symRkp(T ) = Rk(T )

Proof. Consider the symmetric Kronecker-Weierstrass decomposition of T

T =
( p

�
i=1

Sεi

)
�

(
�
l,k

J̌wlk,alk

)

By theorem 4.3.9 we know that

symRkp(T ) ≥ Rk(T ) =
p∑
i=1

2(εi + 1) +
∑
l,k

wlk + δ
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where δ is the number of the non-squarefree invariant polynomials of T . Clearly

symRkp(T ) ≤
p∑
i=1

symRkp(Sεi) + symRkp

(
�
l,k

J̌wlk,alk

)

=
p∑
i=1

2(εi + 1) + symRkp

(
�
l,k

J̌wlk,alk

)

Let us focus on the regular part of T . In the same perspective of corollary 2.2.9, we
decompose the regular part �lk J̌wlk,alk in(

�
α∈I1

J̌wα,aα

)
� . . .�

(
�
β∈Ir

J̌wβ ,aβ

)
�

(
�
γ∈J

J̌1,aγ

)

where the block-direct-sum indexed by Ij is given by the Jordan blocks of the non-
squarefree factors of the j-th invariant polynomial and the block indexed by J is given
by the Jordan blocks of size 1 (hence it is diagonal and we denote it by D).
Let us denote Pj =�Ij J̌ws,as and Nj = size(Pj). Every block-direct-sum Pj is a block-
diagonal pencil with Hankel blocks and it has distinct roots as 6= at for all s 6= t ∈ Ij :
in particular, it has the same property in 4.5.2 and same arguments [6, Lemma 7.3] in
lemma 4.5.3 lead to

symRkp(Pj) = Rk(Pj) = Nj + 1

It follows

symRkp(T ) ≤
p∑
i=1

2(εi + 1) +
r∑
j=1

symRkp(Pj) + symRkp(D)

=
p∑
i=1

2(εi + 1) +
∑
lk

wlk + δ

= Rk(T )

Note: In tables (4.21) and (4.22) we list the pencils of quadrics we studied in Ch.3, §2
by exhibiting their partially-symmetric rank (equivalent to the rank by theorem 4.5.4),
their border rank and their minimal decomposition.

4.5.2 GL-orbits and their dimensions

By theorem 2.4.2 the action (4.6) for K2 ⊗ Sym2(Km+1) simplifies to the action

GL2(K)×GLm+1(K) −→ Aut
(
K2 ⊗ Sym2(Km+1)

)
(M,P ) 7→

(
u⊗ l2 7→Mu⊗ P · l2 ·tP

) (4.20)
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Hence GL-orbits in the partially-symmetric case are with respect to the action (4.20).

Remark 4.5.5. By theorem 4.2.3 it follows that even for pencils of quadrics (or equiv-
alently, tensors in K2 ⊗ Sym2(Km+1)) the GL-orbits are finitely many if and only if
m + 1 ≤ 3. In particular, the representatives in table (4.21) cover all the GL-orbits
of pencils of quadrics in P2 but the representatives in table (4.22) do not even cover
all the GL-orbits of regular pencils in P3: for the latter ones we need the continuous
moduli too.

Given a pencil of quadrics T ∈ K2⊗Sym2(Km+1), the action (4.20) induces the map

γT : GL2(K)×GLm+1(K) −→ K2 ⊗ Sym2(Km+1)
G 7→ G · T

with image orbGL(T ). By deriving γT in the identity I = (I2, Im+1), we get the linear
map

d(γT )I : gl2(K)× glm+1(K) −→ K2 ⊗ Sym2(Km+1)
g 7→ g · T

whose kernel is the Lie algebra of the stabilizer stabGL(T ) and whose rank is the
dimension of orbGL(T ). As for general tensors, to compute the dimension of the orbit
we may compute

dim
(

orbGL(T )
)

= Rk
(
d(γT )I

)
= 4 + (m+ 1)2 − dim

(
ker

(
d(γT )I

))
Note: In Ch.6, §2.2 we implement the computation of the orbit dimensions on Macaulay2.

Example 4.5.6. Consider T = λ⊗ x2 ∈ K2 ⊗ Sym2(K3) with pencil
[
λ

0
0

]
. Then

[T ] ∈ Seg(P1 × ν2(P2)) is decomposable and the SL-action sends decomposable tensors
in decomposable tensors, hence its projective SL-orbit is Seg(P1× ν2(P2)) of dimension
3, that is the affine GL-orbit has dimension 4.

Remark 4.5.7. In all tables describing pencils of quadrics in chapter 3, we always
considered only the pencils defined by non-degenerate intersections: for instances, we
did not consider the pencils

[
λ

0
0

]
and

[
λ

λ

λ

]
(with Segre symbols [1] and [(1 1 1)]

respectively) since one of the two quadrics defining them are identically zero, hence they
give trivial intersections. For this reason in the following we do not consider all orbits in
K2⊗Sym2(Km+1) but only the ones corresponding to (non-trivial) pencils of quadrics.

By keeping in mind remark 4.5.7, we now list the GL-orbits of all non-trivial pencils
of quadrics in P2 and the ones of the regular pencils of quadrics in P3 by exhibiting orbit
dimensions, partially-symmetric ranks, border ranks and minimal decompositions.
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Segre symbol dim symRkp Rk T

[1 1 1] 12 3 3 λ⊗x2+(λ+µ)⊗y2+µ⊗z2

[2 1] 11 4 3 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+µ⊗z2

[(1 1) 1] 10 3 3 λ⊗x2+λ⊗y2+µ⊗z2

[3] 10 4 3
[(2 1)] 9 4 3 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+λ⊗z2

[; 1; ] 8 4 3
[1 1; ; 1] 8 2 2 λ⊗x2+µ⊗y2

[2; ; 1] 7 3 2 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2

(4.21)

Note: The regular cases in P2 where (partially-symmetric) rank and border rank do
not coincide are exactly the ones where the regular block is not diagonal. The same
can be observed in P3.

Segre symbol dim symRkp Rk T

[1 1 1 1] 19 4 4 λ⊗x2+(λ+µ)⊗y2+(λ−µ)⊗z2+µ⊗w2

[2 1 1] 19 5 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+µ⊗z2+(λ+µ)⊗w2

[(1 1) 1 1] 18 4 4 λ⊗x2+λ⊗y2+µ⊗z2+(λ+µ)⊗w2

[3 1] 18 5 4
[(2 1) 1] 17 5 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+λ⊗z2+µ⊗w2

[(1 1 1) 1] 15 4 4 λ⊗x2+λ⊗y2+λ⊗z2+µ⊗w2

[2 2] 18 5 4
[(1 1) 2] 17 5 4 λ⊗x2+λ⊗y2+µ⊗(z+w)2+(λ−µ)⊗z2−µ⊗w2

[(1 1) (1 1)] 16 4 4 λ⊗x2+λ⊗y2+µ⊗z2+µ⊗w2

[4] 17 5 4
[(3 1)] 17 5 4
[(2 2)] 15 6 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+

+λ⊗(z+w)2+(µ−λ)⊗z2−λ⊗w2

[(2 1 1)] 14 5 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+λ⊗z2+λ⊗w2

(4.22)

Remark 4.5.8. The pencils of quadrics [2 2] and [(2 2)] in P3 make fully appreciate
theorem 4.3.9 and the weight δ in formula (4.15). Indeed both pencils have two Jor-
dan blocks of size 2 but in [2 2] they are related to different roots while in [(2 2)] to
the same root: this means that in [2 2] there is one only invariant polynomial and it is
non-squarefree, hence the weight is δ = 1; instead in [(2 2)] there are two invariant poly-
nomials both non-squarefree, hence the weight is δ = 2. This is why symRkp([2 2]) = 5
while symRkp([(2 2)]) = 6.



96 4. Tensor rank decomposition

Remark 4.5.9. All orbits in table (4.22) have border rank 4 since the 4-th secant
variety σ4(P1 × ν2(P3)) fills up the ambient space P19. Actually, every orbit in K2 ⊗
Sym2(K4) has border rank ≤ 3 if and only if the corresponding pencil is singular.



Chapter 5

Abelian and nonabelian apolarity

In this chapter we introduce the abelian and nonabelian apolarity theory. In
the first section we show the classical catalecticant method for decomposing a
given f ∈ Symd V : the Waring decomposition of f is to be found in the zeros
of its apolar ideal f⊥ and the kernels of the catalecticant maps Ce,f help to
restrict the research loci. Since this method fails in many cases, in the second
section we introduce a generalization in terms of vector bundles: this language
not only allows to solve the gap of the previous method but it also suggests new
methods for the decomposition of general tensors (even not symmetric). The
first two sections are just introductory and motivational to the last one, where
we recover the nonabelian apolarity for symmetric 2-slice tensors by deriving
it from the Kronecker decomposition of matrix pencils.

Let K be an algebraically closed field with characteristic 0.
We will work with finite dimensional vector spaces over K.

5.1 Catalecticant method in Symd V and apolarity

Goal: Express f ∈ Symd V as sum of powers of linear form ∑r
i=0 l

d
i .

Let x0, . . . , xm and ∂0, . . . ∂m be coordinates on V and V ∨ respectively, where ∂i = ∂
∂xi

.
A given g ∈ Syme V ∨ acting on Symd V defines the contraction map

yg : Symd V −→ Symd−e V

f 7→ g · f
(5.1)

Remark 5.1.1.

• if e > d, then yg ≡ 0; else if e = d, then yg(Symd V ) ⊆ K;

• the Symd V × Syme V ∨ → Symd−e V such that (f, g) 7→ g · f is bilinear.
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Proposition 5.1.2. Let e ≤ d. Let g ∈ Syme V ∨ and ld ∈ νd(PV ) ⊆ Symd V . Then

g(∂0, . . . , ∂m)(ld) = d!
(d− e)!g(l)ld−e

where g(l) is the evaluation of g at l. In particular, if e ≤ d

g · ld = 0 ⇐⇒ g(l) = 0

Proof. It is enough to prove for g = ϕe where ϕ = ∑m
i=0 ϕi∂i and we do it by induction

on e. Our claim is
ϕe(ld) = d!

(d− e)!ϕ
e(l)ld−e

If e = 0, then ld = ld. Let e ≥ 1: then

ϕe+1(ld) = ϕ · ϕe(ld)

= ϕ ·
( d!

(d− e)!ϕ
e(l)ld−e

)
= d!

(d− e)!ϕ
e(l) · ϕ(ld−e)

= d!
(d− e)!ϕ

e(l) (d− e)!
(d− e− 1)!ϕ(l)ld−e−1

= d!
(d− (e+ 1))!ϕ

e+1(l)ld−(e+1)

Corollary 5.1.3. If e = d, then g · ld = d!g(l) ∈ K.

Now we introduce an important tool to reach our goal.

Definition. The apolar ideal of a given f ∈ Symd V is the polynomial ideal

f⊥ = {g ∈ Sym• V ∨ | g · f = 0} ⊂ K[∂0, . . . , ∂m]

Definition. The apolar ring of a given f ∈ Symd V is the quotient ring

Af = K[∂0, . . . , ∂m]�f⊥

Example 5.1.4. If f = x0x1x2 ∈ Sym3 V , then f⊥ = (∂2
0 , ∂

2
1 , ∂

2
2) ⊂ K[∂0, ∂1, ∂2].

Let us underline many basic properties of these two apolar objects: given f ∈
Symd(Km+1), it holds

• f⊥ is a homogeneous ideal in K[∂0, . . . , ∂m];
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• when e > d = deg(f), then (f⊥)e = Syme V ∨;

• Af is artinian (hence noetherian and 0-dimensional);

• (Af )e = Syme V ∨�(f⊥)e;

• (f⊥)d is a 1-codimensional subspace of Symd V ∨: indeed

(f⊥)d = ker(Symd V ∨ → K)

Next we investigate some more advanced apolar properties.

Proposition 5.1.5. (f⊥)d determines the whole apolar ideal f⊥. More precisely, given
m = (∂0, . . . , ∂m) the irrelevant (maximal) ideal in K[∂0, . . . , ∂m], for all i ≤ d

(f⊥)i =
(
(f⊥)d : md−i

)
i

=
{
g ∈ Symi V ∨ | g · ∂α ∈ (f⊥)d, ∀∂α ∈ K[∂0, . . . , ∂m]d−i

}
Definition. Let V,W be finite dimensional K-vector spaces. A perfect pairing of V
and W is a bilinear map

A : V ×W → K

such that

(P1) A(v, w) = 0 ∀v ∈ V =⇒ w = 0;

(P2) A(v, w) = 0 ∀w ∈W =⇒ v = 0.

Note: One may say that V and W are a perfect pairing if there exists a bilinear map
A that satisfies (P1) and (P2). If V and W are a perfect pairing, then V ' W∨ (in
particular, dimV = dimW ) since

V → W∨ W → V ∨

v 7→ A(v, ·) w 7→ A(·, w)

are injective for (P1) and (P2) respectively.

Definition. Let A be a graded algebra over K, finite dimensional ad K-vector space
(i.e. A = ⊕N

i=0Ai). Then A is Gorenstein of socle N (or N -Gorenstein) if its graded
components satisfy the Poincarè duality, that is AN ' K and for all i ≤ N

Ai ×AN−i −→ AN ' K

is a perfect pairing. In particular, dimAi = dimAN−i.

Theorem 5.1.6. The apolar ring Af is Gorenstein of socle d.
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Proof. Consider [l] ∈ (Af )i and [m] ∈ (Af )d−i: then [m · l] ∈ (Af )d ' K. We want to
prove that

[m · l] = [0] ∀l =⇒ [m] = [0]

But [m · l] = [0] ∀l means that m · l ∈ (f⊥)d ∀l ∈ Symi V ∨, that is m ∈ (f⊥)d−i, hence
[m] = [0].

Actually a more general result holds [21, Lemma 2.14]:

Theorem 5.1.7 (Macaulay, 1916).

K[x0, . . . , xm]
I

is artinian and d-Gorenstein ⇐⇒ I = f⊥ for some f ∈ Symd(Km+1)

The next result is the main bridge between the Waring decomposition of a polynomial
and its apolar ideal.

Lemma 5.1.8 (Apolarity). Let Z be a finite set of linear forms on V (or equivalently
a finite set of hyperplanes on V ∨) and let f ∈ Symd V . Then

f =
∑
l∈Z

ld ⇐⇒ IZ ⊆ f⊥

where IZ = {g ∈ Sym• V ∨ | g(l) = 0 ∀l ∈ Z}.

Proof. Given g ∈ IZ , we have g · f = ∑
Z g · ld = ∑

Z g(l)ld−deg(g) = 0, hence IZ ⊆ f⊥.
Conversely, by hypothesis (IZ)d ⊆ (f⊥)d: we may work with this graded component
since by proposition 5.1.5 it determines f⊥. Then (⋂l∈Z Il)d ⊆ (f⊥)d and by applying
the ⊥-operator we have

(f⊥)d ⊆
∑
l∈Z

(ld) =
∑
l∈Z

(Il)⊥d

hence f = ∑
l∈Z l

d.

Remark 5.1.9. By apolarity lemma 5.1.8 if we look for a decomposition of f we may
compute f⊥ and look in there for 0-dimensional ideals (indeed these are related to finite
sets).

Example 5.1.10. Consider f = xyz. Then (xyz)⊥ = (∂2
x, ∂

2
y , ∂

2
z ). The ideal (∂2

x −
∂2
y , ∂

2
y − ∂2

z ) ⊂ (xyz)⊥ is the ideal of the four points (±1,±1, 1) and we may consider

l1 = x+ y + z , l2 = x− y + z , l3 = −x+ y + z , l4 = −x− y + z

Then l31 − l32 − l33 + l34 = 24xyz gives a decomposition of f (up to scalar).
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The 2-dimensional case. When dimV = 2 the apolarity lemma 5.1.8 allows to
compute both rank and border-rank. We may split the apolar ideal f⊥ as

f⊥ = {g ∈ Sym• V ∨ | g · f = 0} =

=
⊕
k

{g ∈ Symk V ∨ | g · f = 0} =

=
∑
k

{
ker(Ck,f : Symk V ∨ → Symd−k V )

}
Remark 5.1.11. When f is of the form f = ∑

i ai
(d
i

)
xd−iyi, then the k-th catalecticant

map for f , with respect to the basis ( ∂
∂xi∂yk−i

) and (xjyd−k−j), corresponds to a Hostle
matrix (i.e. a Toeplitz with respect to the inverse diagonal). Hence apolarity lemma
5.1.8 underlines the importance of the kernels above.

We showed that, given f ∈ Symd V , it holds Rk(C1,f ) ≤ symRk(f); moreover, we
recall that Rk(f) ≤ symRk(f). But we can say more.

Lemma 5.1.12. If Rk(f) ≤ r, then Rk(Ck,f ) ≤ r.

Proof. If f = xd the Ck,f = 〈xd−k〉 has dimension 1. Now let f = ∑r
i=1 l

d
i : then

Rk
(
Ck,
∑r

i=1 l
d
i

)
= Rk

( r∑
i=1

Ck,ldi

)
≤

r∑
i=1

Rk(Ck,ldi )

but the latter ranks are equally 1, so Rk
(
Ck,
∑r

i=1 l
d
i

)
≤ r.

The catalecticant maps are also linked to the secant variety of the Veronese parabola
ν2P1: the following result was at first proven by Gundelfinger [17] but for a proof using
apolarity theory we refer to Kung [24].

Theorem 5.1.13 (Gundelfinger). X = σk(ν2P1) is schematically given by the (k+ 1)-
minors of the catalecticant C[ d2 ],f . Moreover the singular locus is Sing(X) = σk−1(ν2P1)
(in general it just holds the restraint ⊇).

By the above theorem it follows an important characterization of the border rank in
terms of catalecticant maps:

Corollary 5.1.14. Let f ∈ SymdC2. Then Rk(f) = Rk(C[ d2 ],f ).

We recall that the generic rank in SymdC2 is the first k such that the k-th secant
variety σk(νd(P1)) fills the ambient space. By the previous corollary it follows that for
d even the generic rank is

d

2 + 1 = dim Sym
d
2 C2
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But for d odd the generic rank is

d+ 1
2 = Rk

(
Sym

d+1
2 C2∨ → Sym

d−1
2 C2

)
Theorem 5.1.15 (Sylvester). Let d be odd. The generic f ∈ SymdC2 has a unique
decomposition with d+1

2 summands. In particular, its canonical form is

f =
d+1

2∑
i=1

ldi

Proof. Sym
d+1

2 C2 → Sym
d−1

2 C2 has maximal rank for f general. If the rank is maxi-
mum, the catalecticant map has 1-dimensional kernel generated by a unique polynomial
of degree d+1

2 of the form ∏
i

(−βi∂x + αi∂y)

Then by apolarity lemma 5.1.8 f = ∑
i(αix+ βiy)d, hence we conclude.

Remark 5.1.16. For d even the generic rank is d
2 + 1 but there are infinitely many

decompositions: indeed the catalecticant

Sym
d
2 +1C2 → Sym

d
2−1C2

has kernel of dimension 2.

Next we go back to consider a general (m + 1)-dimensional vector space V . As we
have seen for m = 1, the catalecticant maps allow to completely determine the rank of
a given homogeneous polynomial. But for m ≥ 2 this method is not always successful.
We conclude the study of the catalecticant method by exhibiting an algorithm for
computing the rank of a homogeneous polynomial and (unfortunately) by analyzing
when this method fails: this impass leads us to introduce new methods which will be
the main characters of the next section.

Catalecticant algorithm. This algorithm is due to Iarrobino and Kanev (1999,
[21]). Before listing it we remark some properties which derive from what we said so
far: given f ∈ Symd V we have

• for all k-th catalecticant map for f , Rk(Ck,f ) ≤ Rk(f);

• for all k-th catalecticant map for f , kerCk,f ⊂ f⊥;

• by abelian apolarity lemma 5.1.8 we may find the linear summands of f in finite
sets whose ideal is contained in f⊥.
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We are ready for the algorithm. Let f ∈ Symd V where dimV = m+ 1.

(1) Construct the dd2e-th catalecticant map for f

Cd d2 e,f
: Symd

d
2 e V ∨ → Symd−d d2 e V

(2) Compute kerCd d2 e,f ;

(3) Compute the Krull dimension dimKrull(kerCd d2 e,f ):

(a) if it is ≥ 1, the method fails!
(b) else compute Z = Z(kerCd d2 e,f ) = {[l1], . . . , [lr]};

(4) Solve the linear system f = ∑r
i=1 cil

d
i where ci are the indeterminates.

The next result gives us a sufficient condition for its success: it also motivates the
choice of the value dd2e and for a complete proof we refer to [30, Theorem 2.4].

Theorem 5.1.17. Let f = ∑r
i=1 l

d
i ∈ Symd V be a general form of rank r, let zi =

[li] ∈ PV and Z = {z1, . . . , zr}.

(i) If d is even and r ≤
(m+d d2 e

m

)
−m− 1 or d is odd and r ≤

(m+d d2 e−1
m

)
, then

kerCd d2 e,f = IZ ∩ Symd
d
2 e V

and the above algorithm outputs the Waring decomposition of f .

(ii) If d is even but r =
(m+d d2 e

m

)
−m, then it is possible that the finite set Z ′ produced

by the algorithm is such that Z ( Z ′. In particular,

• if m = 2 the algorithm succeed;
• if m ≥ 3 the algorithm will succeed after iterating step (4) finitely many

times using Z ′′ ⊂ Z of size Rk(Cd d2 e,f ).

Failing cases. The catalecticant method can work for a given f ∈ Symd V only if

Rk(f) �
(
m+ bd2c
bd2c

)
Indeed we have that the maximum rank of a catalecticant map is

Rk
(
Cd d2 e,f

: Symd
d
2 e V ∨ → Symb

d
2 c V

)
=
(
m+ bd2c
bd2c

)
and if r is greater or equal either (for d even) there is no kernel to work with or (for d
odd) the equality kerCd d2 e,f = IZ ∩ Symd d2 e V fails. Usually the general rank (m+d

d )
m+1 is

larger than
(m+b d2 c
b d2 c

)
, then cases where the method fails are not rare.
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5.2 Modern vector bundles tools and nonabelian apolarity

The dictionary of the modern language for tensor rank decomposition is given by vec-
tor bundles and their sections. But before introducing its general setting it is worth
underlining that actually the catalecticant method hides the vector bundles language
behind the isomoprhism

Symd(Cm+1)∨ ' H0(Pm,O(d))

So let us reinterpret the catalecticant method in terms of vector bundles. Given e ≤ d,
the contraction map (4.3) gives the linear map

H0(Pm,O(e))⊗H0(Pm,O(d))∨ −→ H0(Pm,O(d− e))∨ = H0
(
Pm,O(e)∨ ⊗O(d)

)∨
and, by fixing f ∈ H0(Pm,O(d))∨, we have the “cohomological” catalecticant map

Ce,f : H0(Pm,O(e)) −→ H0
(
Pm,O(e)∨ ⊗O(d)

)∨
(5.2)

Thus we may reformulate apolarity lemma 5.1.8 as follows [26]:

Lemma 5.2.1 (Abelian apolarity). Let f = ∑r
i=1 zi ∈ H0(Pm,O(d))∨ and let Z =

{[z1], . . . , [zr]} ⊆ P(H0(Pm,O(d))∨). Then

H0(Pm, IZ ⊗O(e)) ⊆ ker(Ce,f ) , H0(Pm, IZ ⊗O(d− e)) ⊆ (ImCe,f )⊥

Moreover, ifH0(Pm,O(d−e))→ H0(Pm,O(d−e)|Z) is surjective (resp. H0(Pm,O(e))→
H0(Pm,O(e)|Z)), then the first inclusion is an equality (resp. the second).

Let us explain what the above theorem states. We refer to the base locus of H0(X, E)
(for a given vector bundle E on a variety X) as the locus of common zeros to all the sec-
tions of the space. Now let f = ∑

[zi]∈Z zi ∈ H
0(Pm,O(d))∨ and assume H0(Pm,O(d−

e))� H0(Pm,O(d−e)|Z) to be surjective: then ker(Ce,f ) = H0(Pm, IZ⊗O(e)) and this
means that the base locus of H0(Pm, IZ ⊗O(e)) is Z itself, that is the decomposition
of f can be computed from the base locus of kerCe,f .

Remark 5.2.2. The advantage of the reformulation of the apolarity due to Oeding
and Ottaviani [30] is that ker(Ce,f ) is computable by an explicit matrix construction
via the presentation of a bundle. Moreover, by studying ker(Ce,f ) one works with
polynomials of lower degree than the starting polynomial f and this is computationally
more efficient.

We may generalize the map (5.2) to a general vector bundle E on an algebraic variety
X (instead of O(e) and Pm respectively) and get a line bundle L which gives the
embedding X ⊂ P(H0(X,L)∨) = PN (it exists by Kodaira embedding). By doing this
we extend the abelian apolarity (lemma 5.2.1) to a nonabelian apolarity.
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Remark 5.2.3. The term “nonabelian” may be misleading in the following sense: we
refer to apolarity in lemma 5.2.1 as “abelian” since E = O(e) gives the abelian object
H0(Pm,O(e)) ' Syme V ∨, while we refer to “nonabelian” apolarity for general vector
bundles E (which do not necessarily lead to abelian objects). In this sense the abelian
apolarity is actually a particular case of the nonabelian one, despite the name. Maybe
one may target as nonabelian only when working with vector bundles of rank ≥ 2
but this would not emphasize how the nonabelian apolarity naturally arises from the
abelian one.

Then the natural contraction map

H0(X, E)⊗H0(X, E∨ ⊗ L)→ H0(X,L) (5.3)

leads to the linear map

H0(X, E)⊗H0(X,L)∨ → H0(X, E∨ ⊗ L)∨

and, by fixing f ∈ H0(X,L)∨, to the linear map

CE,f : H0(X, E)→ H0(X, E∨ ⊗ L)∨ (5.4)

which depends linearly on f . Then lemma 5.2.1 generalizes to the following result.

Proposition 5.2.4. Let f = ∑r
i=1 zi ∈ H0(X,L)∨ and let Z = {[z1], . . . , [zr]} ⊆

P(H0(X,L)∨). Then

H0(X, IZ ⊗ E) ⊆ ker(CE,f ) , H0(X, IZ ⊗ E∨ ⊗ L) ⊆ (ImCE,f )⊥

Moreover, if H0(X, E∨ ⊗ L) → H0(X, E∨ ⊗ L|Z) is surjective (resp. H0(X, E) →
H0(X, E|Z)), then the first inclusion is an equality (resp. the second).

Now let f = ∑r
i=1 zi be a minimal decomposition and let Z = {[z1], . . . , [zr]} ⊆

P(H0(X,L)∨). Let us denote with Rk(E) be the rank of the vector bundle E (i.e. the
dimension of its fibers).

Lemma 5.2.5 (Nonabelian apolarity). If Rk(CE,f ) = r · Rk(E), then

H0(X, IZ ⊗ E) = ker(CE,f ) , H0(X, IZ ⊗ E∨ ⊗ L) = (ImCE,f )⊥

Proof. By proposition 5.2.4 we already know the inclusions ⊆ hold. But by the hy-
pothesis on the ranks it follows

codimH0(X, IZ ⊗ E) ≤ r · Rk(E) = Rk(CE,f ) = codim ker(CE,f )

codimH0(X, IZ ⊗ E∨ ⊗ L) ≤ r · Rk(E) = Rk(CE,f ) = codim(ImCE,f )⊥
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Now we need to introduce a class of projective varieties and a result about them due
to Chiantini and Ciliberto [9, Theorem 1.4].

Definition. A projective variety X is said to be k-weakly defective if its intersection
with a general k-tangent hyperplane has no isolated singularities at the k points of
tangency.

Theorem 5.2.6 (Chiantini, Ciliberto). Let X ⊆ PN be a projective variety of di-
mension n and let k be such that N ≥ (n + 1)k. If X is not k-weakly defective,
then, given P1, . . . , Pk general points on X, the general k-tangent hyperplane H ∈
H(−2P1 − . . .− 2Pk) is tangent to X only at exactly those k points.

The following theorem allows to completely determine the set Z as base locus of
sections.

Theorem 5.2.7. Let Rk(CE,f ) = r · Rk(E), let X be not r-weakly defective and let
the contraction map

H0(X, IZ ⊗ E)⊗H0(X, IZ ⊗ E∨ ⊗ L)→ H0(X, I2
Z ⊗ L)

be surjective. Then the common base locus of ker(CE,f ) and (ImCE,f )⊥ is Z itself.

Proof. We know that the equalities in lemma 5.2.5 hold. If the common base locus
contained Z ∪ {ẑ}, then the whole H0(X, I2

Z ⊗ L) would vanish doubly on ẑ, thus the
general hyperplane section of X ⊆ P(H0(X,L)∨) is singular at both Z and ẑ, hence in
r + 1 tangent points in contraddiction to theorem 5.2.6.

5.2.1 Eigenvectors of tensors and presentations

We are now interested in to exhibit an algorithm for tensor decomposition based on the
nonabelian apolarity we have introduced so far. We want to leverage the advantage we
underlined in remark 5.2.2: in particular this matricial perspective allows to interpret
the base loci of sections of a suitable vector bundle as (a sort of) eigenvectors of a
tensor. First of all we introduce the vector bundle E we will work with.

Definition. Let V be a m+ 1-dimensional K-vector space. The quotient bundle Q
of PV is the cokernel bundle of the monomorphism OPV (−1) ↪→ OPV ⊗ V . The Euler
exact sequence for PV is the SES

0 −→ OPV (−1) −→ OPV ⊗ V −→ Q −→ 0 (5.5)

By taking wedge a-powers and by tensoring by O(e) we get the SES

0 −→
a−1∧

V ⊗O(e− 1) −→
a∧
V ⊗O(e) −→

a∧
Q(e) −→ 0 (5.6)

The vector bundle we will work with is E = ∧aQ(e).
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Eigenvectors for tensors. The next step is to introduce the eigenvectors for a tensor
and to find a relation with sections of ∧aQ(e). Since

H0
(
PV,

h∧
V ⊗O(k)

)
'

h∧
V ⊗ Symk V ∨ ' Hom

(
Symk V,

h∧
V
)

the previous SES gives in cohomology

0 −→ Hom
(

Syme−1 V,
a−1∧

V
)
−→ Hom

(
Syme V,

a∧
V
)

ψ−→ H0
(
PV,

a∧
Q(e)

)
−→ 0

Let us fix the following notation: given a tensor M ∈ Hom(Syme V,
∧a V ), we denote

the corresponding global section ψ(M) by sM ∈ H0(PV,∧aQ(e)).

Definition. Given a tensor M ∈ Hom(Syme V,
∧a V ), a vector v ∈ V is said to be

eigenvector of the tensor M if

M(ve) ∧ v = 0

Note: For e = a = 1 the above definition coincides with the classical one of eigenvector
of a linear map: indeed M(v) ∧ v = 0 if and only if M(v) ∈ 〈v〉C.

Lemma 5.2.8. (i) For all [v] ∈ PV the fiber

( a∧
Q(e)

)
[v]
' Hom

(
〈ve〉,

∧a V
〈v ∧

∧a−1 V 〉

)
(5.7)

(ii) ∀M ∈ Hom(Syme V,
∧a V ), sM ([v]) = 0 if anf only if v is eigenvector for M .

Proof. Consider the composition

〈ve〉 ↪→ Syme V
M−→

a∧
V

π
�

∧a V
〈v ∧

∧a−1 V 〉

which on the fiber in [v] corresponds to the section sM . Then sM ([v]) = 0 if and only
if π ◦M(ve) = 0 if and only if M(ve) ∧ v = 0.

Corollary 5.2.9. The common base locus of H0(PV,∧aQ(e)) corresponds to the com-
mon eigenvectors for Hom(Syme V,

∧a V ).

Presentations of bundles. Before clarifying how sections and eigenvectors for ten-
sors apply to tensor decomposition, we briefly introduce the presentation of a bundle
E on PV . Consider the (finite) minimal resolution of the bundle E

. . .→ L2 → L1 → E → 0
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where each Li is direct sum of line bundles on PV : since it is obtained by sheafificating
the corresponding minimal free resolution of the graded module ⊕kH

0(PV, E(k)), the
map H0(PV,L1) α→ H0(PV, E) is surjective.
We may also consider the (finite) minimal resolution of E∨

. . .→ L∨−1 → L∨0 → E∨ → 0

where each L∨−i is a direct sum of line bundles: in this case, for all line bundle L, the
map H0(PV,L∨0 ⊗ L)

tβ→ H0(PV,E∨ ⊗ L) is surjective.
Dualizing we have the resolution

. . .→ L2 → L1
ρ→ L0 → L−1 → . . .

where Im(ρ) = E . We define ρ : L1 → L0 to be the presentation of E .

The bridge. We are now ready to build the bridge from the sections of the vector
bundle E = ∧aQ(e) (or equivalently the eigenvectors for M ∈ Hom(Syme V,

∧a V )) to
the tensor decomposition of a given f ∈ H0(Pm,L)∨ = Symd V , where L = O(d).
In the new hypothesis the map (5.4) becomes

Ce,f : H0
(
Pm,

a∧
Q(e)

)
−→ H0

(
Pm,

a∧
Q(e)∨ ⊗ L

)∨
(5.8)

where f ∈ H0(Pm,L)∨. Given ρ : L1 → L0 the presentation of ∧aQ(e), consider the
composition

Pe,f : H0(Pm, L1) α→ H0(Pm,
a∧
Q(e)) Ce,f−→ H0(Pm,

a∧
Q(e)∨ ⊗L)∨ β→ H0(Pm, L∨0 ⊗L)∨

(5.9)
where α is surjective and β is injective beacuse of what we said on presentations of
bundles.

Corollary 5.2.10. In the above notations:

(i) Rk(Ce,f ) = Rk(Pe,f );

(ii) ker(Ce,f ) and ker(Pe,f ) have the same base locus.

Remark 5.2.11. The advantage of working with Pe,f is that it can be computed
from a matrix whose entries are homogeneous polynomials. In particular the matrix
representing Pe,f can be constructed by the presentation ρ by replacing the variable
xi by the catalecticant Cd d2 e,∂if if ρ has a linear entry depending on xi, otherwise by
replacing each monomial g(xi) in the xi by the catalecticant of g(∂i) · f [26, §8.3].
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The presentation ρ : L1 → L0 of E = ∧aQ(e) on PV = Pm is

ρ :
a∧
V ⊗O(e) −→

m−a∧
V ∨ ⊗O(e+ 1)

Since H0(Pm, L1) = Hom(Syme V,
∧a V ) and

H0(Pm, L∨0 ⊗ L)∨ = H0
(
Pm,

m−a∧
V ⊗O(e+ 1)∨ ⊗O(d)

)∨
= H0

(
Pm,

m−a∧
V ⊗O(d− e− 1)

)∨
= Hom

(
Symd−e−1 V,

m−a∧
V
)∨

= Hom
(m−a∧

V,Symd−e−1 V
)

from (5.9) we have

Pe,f : Hom
(

Syme V,
a∧
V
)
−→ Hom

(m−a∧
V,Symd−e−1 V

)
(5.10)

In particular, (5.10) is defined for f = vd by

Pe,vd(M)(w) =
(
M(ve) ∧ v ∧ w

)
· ve−m−1 (5.11)

where M ∈ Hom(Syme V,
∧a V ), w ∈ ∧m−a V and (M(ve) ∧ v ∧ w) ∈ ∧m+1 V ' K,

then extendend by linearity to any f ∈ Symd V .

Proposition 5.2.12. Let M ∈ Hom(Syme V,
∧a V ).

(i) v ∈ V is eigenvector for M if and only if M ∈ ker(Pe,vd).

(ii) Given f = ∑r
i=1 v

d
i , if each vi is eigenvector for M , then M ∈ ker(Pe,f ).

Proof. (i) By (5.11) we get

M(ve) ∧ v = 0 ⇐⇒ ∀w ∈
m−a∧

V, M(ve) ∧ v ∧ w = 0 ⇐⇒ M ∈ ker(Pe,vd)

(ii) The thesis follows by linearity of the map (5.10) with respect to f .

Now we are ready to draw our conclusions. Let f = ∑r
i=1 v

d
i ∈ Symd V and Z =

{[vd1 ], . . . , [vdr ]}. We assume to work with the vector bundle E = ∧aQ(e) for suitable
a, e. By theorem 5.2.7, we look for Z in the common base locus of ker(Ce,f ), thus
by corollary 5.2.10 in the common base locus of ker(Pe,f ), hence by proposition 5.2.12
between the common eigenvectors for ker(Pe,f ).
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5.3 Nonabelian apolarity for symmetric 2-slice tensors

We are now interested into finding relations between the nonabelian apolarity and the
Kronecker form of symmetric 2-slice tensors in C2 ⊗ Sym2 V . The vector bundles over
Pm we will work with are the tangent bundle TPm and the bundle of holomorphic
1-forms Ω1

Pm :we obtain both of them by starting from E = ∧aQ(e) for a = e = 1.
Let V be a m + 1-dimensional C-vector space and Pm = PV its projective space. We
recall the Euler sequence (5.5) and we twist it by tensoring by O(1): thus we have the
SES

0→ O → O(1)⊗ V → Q(1)→ 0

Remark 5.3.1. The above SES is actually the SES (5.6) for a = e = 1.

Tangent bundle. Our first claim is to prove that the above twisted quotient bundle
Q(1) is neverthless that the tangent bundle TPm on Pm.
First it is worth understanding which are the fibers of TPm. Let us fix [x] ∈ Pm. Since
GLm+1(C) acts transitively on Pm, the map GLm+1(C) → Pm such that g 7→ g · [x] =
[g · x] and I 7→ [x] is surjective and differentiates in the identity I to the surjection

glm+1(C) = TI
(

GLm+1(C)
)
−→ T[x]Pm

whith kernel {g | g〈x〉 ⊆ 〈x〉}. Thus it follows that the fibers of the tangent bundle are

T[x]Pm '
glm+1(C)

{g | g〈x〉 ⊆ 〈x〉}
(5.12)

Remark 5.3.2. Given g ∈ glm+1(C), it defines for all [x] ∈ Pm an element in T[x]Pm

which vanishes if and only if x is eigenvector for g: indeed g 7→ 0 ∈ T[x]Pm if and only
if g〈x〉 ⊂ 〈x〉 if and only if x is eigenvector for g.

Moreover, by (5.7) we know that the fibers of the twisted quotient bundle Q(1) are
(
Q(1)

)
[x]
' Hom

(
〈x〉, V
〈x〉

)
(5.13)

Proposition 5.3.3. The isomorphism Q(1) ' TPm of vector bundles holds.

Proof. We prove the isomorphism (of vector spaces) for the fibers (Q(1))[x] ' T[x]Pm.
Let us fix [x] ∈ Pm. We consider the natural map

glm+1(C) −→ Hom
(
〈x〉, V〈x〉

)
g 7→ π〈x〉 ◦ g|〈x〉

where π〈x〉 is the quotient projection: this map is surjective for x 6= 0 and its kernel is
{g | g〈x〉 ⊆ 〈x〉}, hence by (5.12) and (5.13) it follows T[x]Pm ' (Q(1))[x].
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Corollary 5.3.4. The following short sequence is exact

0 −→ O −→ O(1)⊗ V −→ TPm −→ 0 (5.14)

The SES (5.14) leads to the SES in cohomology

0→ H0(Pm,O)→ H0(Pm,O(1)⊗ V )→ H0(Pm, TPm)→ 0

(since H1(Pm,O) = 0). Now H0(Pm,O) ' C and

H0(Pm,O(1)⊗ V ) ' H0(Pm,O(1))⊕m+1 '
(
(Cm+1)∨

)⊕m+1
' glm+1(C)

By exactness we have h0(Pm, TPm) = (m + 1)2 − 1. Moreover, H0(Pm, TPm) has a
natural Lie algebra structure by (5.12). Since the map H0(Pm,O)→ H0(Pm,O(1)⊗V )
corresponds to

C −→ glm+1(C)
λ 7→ λI

whose cokernel is the Lie algebra slm+1(C) of traceless matrices, it follows

H0(Pm, TPm) ' slm+1(C)

Remark 5.3.5. By remark 5.3.2, if g ∈ glm+1(C) vanishes in T[x]Pm for all [x] ∈ Pm,
then it must be of the form g = λI, that is it induces the zero section sg = 0 in
H0(Pm, TPm). In particular, the common base locus of H0(Pm, TPm) coincides with
the common eigenvectors for glm+1(C), as corollary (5.2.9) exactly states.

Holomorphic 1-forms. Since (TPm)∨ ' Ω1
Pm , if we dualize and tensorize (5.14) by

O(2) we get the SES

0 −→ Ω1(2) −→ O(1)⊗ V ∨ −→ O(2) −→ 0

(the functor Hom(•,C) is exact since C is injective as C-module), thus in cohomology

0→ H0(Pm,Ω1(2))→ V ∨ ⊗ V ∨ → Sym2 V ∨ → 0

(since H1(Pm,Ω1(2)) = 0 by Bott’s formula [4]). Moreover, H0(Pm,Ω1(2)) ' ∧2 V ∨ is
(isomorphic to) the space of skewsymmetric matrices of size m+ 1.
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Nonabelian apolarity in C2 ⊗ Sym2 V . Let T ∈ C2 ⊗ Sym2 V be a symmetric 2-
slice tensor with associated symmetric pencil defined by the pair (B1, B2) of symmetric
matrices of size m + 1. We recall that the map in (5.4) was defined by fixing f ∈
H0(Pm,L)∨: for L = O(2) we may see f as a symmetric matrices, so if we have a pair of
symmetric matrices (B1, B2) it comes quite natural to pick (B1, B2) ∈ H0(Pm,O(2))∨⊕
H0(Pm,O(2))∨. Thus we set L = O(2).
We now extend the natural contraction map (5.3) to

H0(Pm, E)⊗
(
H0(Pm, E∨(2))⊕H0(Pm, E∨(2))

)
→ H0(Pm,O(2))⊕H0(Pm,O(2))

which leads, by fixing (B1, B2) ∈ H0(Pm,O(2))∨ ⊕H0(Pm,O(2))∨, to

C(B1,B2) : H0(Pm, E) −→ H0(Pm, E∨(2))∨ ⊕H0(Pm, E∨(2))∨ (5.15)

which extends (5.8). For E = TPm ' Q(1) we obtain

C(B1,B2) : H0(Pm, TPm) −→ H0(Pm,Ω1(2))∨ ⊕H0(Pm,Ω1(2))∨ (5.16)

Fortunately we may reintepret the above map in terms of matrices and this leads to an
explicit homomorphism.

Proposition 5.3.6. Up to scalars, the map C(B1,B2) in (5.16) is equivalent to

C(B1,B2) : slm+1(C) −→ ∧2 V ⊕
∧2 V

A 7→
(
AB1 −B1(tA) , AB2 −B2(tA)

) (5.17)

Proof. First of all we underline that the above map is well defined since for all matrices
A,B the matrix AB − (tB)(tA) is skewsymmetric and the pair (B1, B2) is symmetric.
Clearly it is enough to prove the thesis for

Ci : slm+1(C)⊗ Sym2 V →
∧2 V

A⊗Bi 7→ ABi −Bi(tA)

We consider the following actions of GLm+1(C):

• on ∧2 V and Sym2 V it acts by congruence;

• on slm+1(C), given G ∈ GLm+1(C), by A 7→ tGA(tG)−1.

The map Ci is a homomorphism of GLm+1(C)-modules: indeed

tG
(
ABi −Bi(tA)

)
G = (tG)ABiG− (tG)Bi(tA)G

= (tG)A(tG)−1(tG)BiG− (tG)BiG(G−1)(tA)G

=
(
tGA(tG)−1

)(
tGBiG

)
−
(
tGBiG

)
t
(
tGA(tG)−1

)
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As GLm+1(C)-module, slm+1(C) ⊗ Sym2 V is completely reducible and it has ∧2 V

as submodule, hence we have the decomposition slm+1(C) ⊗ Sym2 V = ∧2 V ⊕ W .
Moreover, by Pieri’s formula [13, Proposition 15.25] the irreducible submodule ∧2 V

appears with multiplicity 1 in slm+1(C)⊗ Sym2 V .
Now we note that by Schur’s lemma for all ϕ1, ϕ2 : ∧2 V →

∧2 V it holds ϕ1 =
λϕ2 for some scalar λ ∈ C×, hence Ci|∧2

V
is the only one GLm+1(C)-endomorphism

(up to scalars) of ∧2 V . Moreover, always by Schur’s lemma the only GLm+1(C)-
homomorphism W →

∧2 V is the identically zero one, thus there is only one extension
of Ci|∧2

V
to slm+1(C)⊗ Sym2 V and it has to be Ci.

Remark 5.3.7. Another possible proof is by hand: one explicits the isomorphisms
H0(Pm, TPm) ' slm+1(C) and H0(Pm,Ω1(2))∨ ' ∧2 V and the map (5.16) on the
global sections. We chose a more theoretical proof to underline the GLm+1(C)-module
structure of slm+1(C) and ∧2 V (and to avoid counts as well!).

Remark 5.3.8. One may wonder why we just need (5.17) up to scalars. The reason is
because we are interested in studying the kernel of the map to recover its eigenvectors,
and the kernel is invariant for scalar multiplication.

Before stating the main result of this section we need to prove some preliminary lem-
mas to make the proof more natural. To light up the notation we will not make
distinction between a symmetric pencil of size m + 1, its corresponding tensor in
C2 ⊗ Sym2 V and the pair of matrices which defines it: hence we will improperly
write (B1, B2) ∈ C2 ⊗ Sym2 V .

Note: In the following we will work with general pencils. In algebraic geometry an
element is “general” if it belongs to a dense open subset of the space, or equivalently it
does not belong to a closed subset. This notion is a double-edged sword: on one hand
it allows to describe properties which hold outside a null subset of the space, so that
we may assume for almost all elements those properties; on the other hand there is not
an exact characterization for general elements since, if we have a dense open subset
whose elements respect a given property P and we add one single element without
that property, the new subset is still a dense open but not all of its elements satisfy P.

We need to clarify as far as possible what it means for a pencil in C2 ⊗ Sym2 V to
be general. We start by assuming that a general pencil is regular since this condition
is equivalent to ask its determinant not to be identically zero, hence it defines a dense
open subset.

Lemma 5.3.9. Let (B1, B2) ∈ C2 ⊗ Sym2 V be a general symmetric pencil of size
m+1. Then we may assume (B1, B2) to be regular with no infinite elementary divisors
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and distinct linear finite elementary divisors, i.e. its Kronecker form to be

diag(λ+ a1µ, . . . , λ+ am+1µ) = µ diag(a1, . . . , am+1) + λIm+1

where ai ∈ C× are all distincts.

Proof. As mentioned right before stating the lemma, we may assume the pencil to be
regular. Up to acting with GL2(C) we may also assume the pencil to have no infinite
elementary divisors.
Let us focus on the (finite) elementary divisors: since they are defined by the eigenvalues
of B1B

−1
2 , it is enough to prove that a general B1B

−1
2 has distinct eigenvalues. But

the characteristic polynomial of a general B1B
−1
2 is a general polynomial, hence it has

distinct roots (otherwise the variety it defines would be contained in a hypersurface,
against the hypothesis to be general). By the same argument, if the pencil has non-zero
minimal indices, then the characteristic polynomial of B1B

−1
2 would vanish in 0, but a

general polynomial does not.

Lemma 5.3.10. The kernel ker(C(B1,B2)) of the map in (5.17) is invariant for GL2(C)-
action on C2 ⊗ Symd V . In particular it does not depend only on the matrices B1, B2
but on the pencil they define.

Proof. Let µB1 + λB2 be the pencil defined by the pair (B1, B2) and let µ̃B1 + λ̃B2 =
µ(αB1 +γB2)+λ(βB1 +δB2) = µB̃1 +λB̃2 be the pencil obtained by acting by GL(2).
If A ∈ ker(C(B1,B2)) then

A(αB1 + γB2)− (αB1 + γB2)(tA) = α(AB1 −B1(tA)) + γ(AB2 −B2(tA)) = 0

that is A ∈ ker(C(B̃1,B̃2)) and since the linear transformation is invertible the converse
holds too.

Now we state and prove our result for a general Kronecker form: the case of a generic
general pencil is an immediate corollary.

Theorem 5.3.11. Let (D, I) ∈ C2 ⊗ Sym2 V be a general symmetric pencil in Kro-
necker form as in lemma 5.3.9. Then:

(i) all matrices in ker(C(D,I)) have the same common (linearly independent) eigen-
vectors v1, . . . , vm+1; in particular, these vectors are the ones which give the
Kronecker form, i.e.

T(D,I) =
m+1∑
i=1

αi ⊗ vi ⊗ vi

where αi = (Dii, 1) ∈ C2;
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(ii) ker(C(D,I)) has dimension m+ 1 in glm+1(C) and m in slm+1(C);

(iii) for C ∈ ker(C(D,I)) general, in glm+1(C) it holds ker(C(D,I)) = 〈I, C, . . . , Cm〉C.
In particular, in slm+1(C) it holds ker(C(D,I)) = 〈I, C, . . . , Cm〉C ∩ slm+1(C).

Proof. Since the pencil is general and it already is in Kronecker form, by lemma 5.3.9
we know that D = diag(a1, . . . , am+1) where ai ∈ C× are all distinct. Consider the
map in (5.17)

A 7→
(
AD −D(tA) , AI − I(tA)

)
(i) Let A ∈ ker(C(D,I)): then from the second component of its image we know that

A = tA, that is A is symmetric. Then

ker(C(D,I)) ⊆ slm+1(C) ∩ Sym2(Cm+1)

Then from the first component of its image we have 0 = AD−D(tA) = AD−DA,
that is

ker(C(D,I)) ⊆ Zsl(D)

where Zsl(D) is the centralizer of D in slm+1(C). Since Zsl(D) is an abelian
Lie subalgebra of slm+1(C), for all A,B ∈ ker(C(D,I)) we have the zero bracket
[A,B] = 0. In particular, ker(C(D,I)) is an abelian Lie subalgebra of slm+1(C).
But Zsl(D) is a maximal toral subalgebra since D is a semisimple element, hence
all matrices in Zsl(D) are simultaneously diagonalizable to D with same common
eigenvectors v1, . . . , vm+1: in particular, the ones in ker(C(D,I)) are so.

(ii) Since dim slm+1(C) = (m + 1)2 − 1 and dim∧2 V =
(m+1

2
)
, by the first group

homomorphism theorem it follows

dimsl ker(C(D,I)) ≥ (m+ 1)2 − 1− (m+ 1)m = m

But ker(C(D,I)) ⊆ Zsl(D) and, since D is a semisimple element in the semisimple
Lie algebra slm+1(C), Zsl(D) is actually a Cartan subalgebra of slm+1(C): since
all Cartan subalgebras are conjugated, dimZsl(D) = m, thus

dimsl ker(C(D,I)) ≤ m

It follows than ker(C(D,I)) has dimension m in slm+1(C), hence m+1 in glm+1(C).

(iii) Let C(D,I) be defined on glm+1(C). Clearly, if C ∈ ker(C(D,I)), then Ck ∈
ker(CD,I) for all k ≥ 0, but by Hamilton-Cayley at least Cm+1 is linearly de-
pendent on I, C, . . . , Cm: it follows that 〈I, C, . . . , Cm〉C ⊆ ker(CD,I). For C
general, the I, C, . . . , Cm are linearly independent and, since the kernel has di-
mension m+ 1 in glm+1(C), the equality holds.
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Theorem 5.3.12. Let (B1, B2) ∈ C2 ⊗ Sym2 V be a general symmetric pencil as in
lemma 5.3.9. Then:

(i) all matrices in ker(C(B1,B2)) have the same common eigenvectors v1, . . . , vm+1
which are induced by the vectors ṽ1, . . . , ṽm+1 defining the Kronecker form

T(B1,B2)
GL∼

m+1∑
i=1

αi ⊗ ṽi ⊗ ṽi

where αi ∈ C2;

(ii) ker(C(B1,B2)) has dimension m+ 1 in glm+1(C) and m in slm+1(C);

(iii) for C ∈ ker(C(B1,B2)) general, in glm+1(C) it holds ker(C(B1,B2)) = 〈I, C, . . . , Cm〉C.
In particular, in slm+1(C) it holds ker(C(B1,B2)) = 〈I, C, . . . , Cm〉C ∩ slm+1(C).

Proof. We recall that two complex symmetric pencils are strictly equivalent if and only
if they are congruent (by theorem 2.4.2).
It is enough to prove that the kernels of all strictly equivalent pencils are all conjugated:
more precisely, for all P ∈ GLm+1(C) it holds

ker(C(PB1(tP ),PB2(tP ))) = P−1 · ker(C(B1,B2)) · P

Clearly it is enough to prove it with respect to the Kronecker form of the pencil. Since
the pencil defined by (B1, B2) is general, by lemma 5.3.9 we know that its Kronecker
form is defined by the pair (D, I) where D is diagonal with all distinct diagonal elements
ai ∈ C×. Let P ∈ GLm+1(C) be such that (PB1(tP ), PB2(tP )) = (D, I). Then

A ∈ ker(C(D,I)) ⇐⇒

AD = D(tA)
AI = I(tA)

⇐⇒

APB1(tP ) = PB1(tP )(tA)
APB2(tP ) = PB2(tP )(tA)

⇐⇒

P−1APB1 = B1(tP )(tA)(tP )−1

P−1APB2 = B2(tP )(tA)(tP )−1

⇐⇒

(P−1AP )B1 = B1(t(P−1AP ))
(P−1AP )B2 = B2(t(P−1AP ))

⇐⇒ P−1AP ∈ ker(CB1,B2)

This correspondence makes things easier.

(i) By theorem 5.3.11 we know that ker(CD,I) admits the same common eigenvectors
ṽ1, . . . , ṽm+1 and these give the Kronecker form (D, I). Let A ∈ ker(CB1,B2): then
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PAP−1 ∈ ker(CD,I), hence for all i = 1 : m + 1 we have PAP−1ṽi = λA,iṽi. By
setting vi = P−1ṽi for all i = 1 : m+ 1 we have

Avi = A(P−1ṽi) = λA,i(P−1ṽi) = λA,ivi

Since this works for all A ∈ ker(CB1,B2) it follows that v1, . . . , vm+1 are common
eigenvectors for ker(C(B1,B2)).

(ii) Since ker(CB1,B2) = P · ker(CD,I) · P−1 and the dimension is invariant for con-
jugacy, we have that ker(C(B1,B2)) has dimension m in slm+1(C) and m + 1 in
glm+1(C).

(iii) It follows by the same arguments in theorem 5.3.11(iii).

Remark 5.3.13. We proved the theorem by assuming the symmetric pencil (B1, B2) to
be general as in lemma 5.3.9. Actually we may weaken such hypotheses of “generality”
by considering regular pencils with no infinite elementary divisors and linear finite
elementary divisors not necessarily distincts: in this case theorem 5.3.12 still holds since,
given (D, I) the Kronecker form of such a pencil, ker(C(D,I)) ⊆ Zsl(D) and the latter
is a maximal toral subalgebra of slm+1(C), hence all its elements are simultaneously
diagonalizable.
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Chapter 6

Implementations on Macaulay2

6.1 Kronecker invariants for matrix pencils

Remark 6.1.1 (True Sad Story). Unfortunately the author found out the existence
of an already-implemented package1 in Macaulay2 only after he independently imple-
mented some functions by himself: this is why in the following a final function exhibiting
the Kronecker form of a pencil is missing and we only show the implementations made
by the author.

Remark 6.1.2. We set the polynomial ring we will work in to be R=QQ[x,y]. We work
over Q to be sure to not have any problem between exact arithmetic and approximated
arithmetic: indeed we are not interested into find the roots of the invariant polynomials
but just into factorize them into the elementary divisors and these will be in Q[x, y]
too.

Computing invariant polynomials:
--input: M matrix with coefficients in R
--output: L list of invariant polynomials of M

invpoly=(M)->(
r=rank(M);
d1=(gens saturate minors(r,M)) (0,0);
-- computation of the gcd of the minors of size r
for i from 0 to r-1 list (

d1=(gens saturate minors(r-i,M)) (0,0);
d2=(gens saturate minors(r-i-1,M)) (0,0);
-- iterative division of the gcd of (r-i)-minors by the gcd of (r-i-1)-minors
continue (r-i,d1//d2) )

)
1http://www2.macaulay2.com/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Kronecker/html/

119
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L=invpoly(M)
List

Comment: The function invpoly outputs the list of the invariant polynomials of the
pencil in the following order: the invariant polynomial (L j) 1 divides the preceeding
one (L {j-1}) 1 .

Computing elementary divisors:
--input L=invpoly(M) list of invariant polynomials of M
--output: E list of elementary divisors of M

elemdiv=(L)->(
r=length(L);
i=0;
P=(L 0) 1;
-- fix the bigger invariant polynomial (the other ones divide this)
while P%xˆ(i+1)!=0 do i=i+1;
for i from 0 to r-1 list (

if (L i) 1!=1 and gcd(xˆi,(L i) 1)!=1 then continue gcd(xˆi,(L i) 1) ),
-- the infinite elementary divisors has been found

P=P//xˆi;
F=factor P;
-- the elementary divisors which are maxima powers have been found
l=#F;
for j from 0 to l-1 list (

for i from 0 to r-1 do (
if gcd(value F#j,(L i) 1)!=1 then continue gcd(value F#j,(L i) 1) ))
-- the other elementary divisors are obtained as gcd between the first
-- ones and the invariant polynomials of lower degree

)
E=elemdiv(M)
List

Comment: The function elemdiv outputs the list of the elementary divisors of the
pencil in the following order: first the infinite ones with decreasing exponents, second
the finite ones which divide the bigger invariant polynomial, then the others with de-
creasing degree.

Computing minimal indices:
--input: M matrix with coefficients in R
--output: I list of minimal indices for columns of M, J list of minimal indices

for rows of M

minindxcol=(M)-> (
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k=mingens ker M;
C=degrees k;
C1=C 1;
c1=length C1;
for i from 0 to c1-1 list (

if (C1 i) 0==0 then continue (C1 i) 0
else continue (C1 i) 0-1 )

)
I=minindxcol(M)
List

minindxrow=(M)-> (
N=transpose M;
h=mingens ker N;
D=degrees h;
D1=D 1;
r1=length D1;
for j from 0 to r1-1 list (continue (D1 j) 0)
)

J=minindxrow(M)
List

Comment: The functions minindxcol and minindxrow output the list of minimal indices for
columns and rows respectively. We just show the algorithm for columns since the one for rows
is similar up to transposing the pencil: the algorithm first computes the minimal generators
of the kernel and the vectors of their degrees via the functions mingens and degrees, then it
outputs the degrees in decreasing order and outputs them as a list.

6.2 Dimension of GL-orbits in K2 ⊗Kn ⊗Kn

In the following we implement the computation of the orbit dimension of a given tensor
t ∈ K2 ⊗Kn ⊗Kn (actually in Kn ⊗Kn ⊗K2). Here we set n = 3 and t = a2 ⊗ b1 ⊗ c1 + a2 ⊗
b2 ⊗ c2 + a2 ⊗ b3 ⊗ c3 + a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c3 (see table (4.13)).
First we define the polynomial ring we will work on, the generic matrices acting on the tensor
space and the tensor whose orbit dimension we want to compute:

n=3
A=a (0,0)..a (n-1,n-1)
B=b (0,0)..b (n-1,n-1)
C=c (0,0)..c (1,1)
R2=QQ[A,B,C,x 0..x (n-1),y 0..y (n-1),z 0,z 1]
pp=transpose genericMatrix(R2,a (0,0),n,n)
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qq=transpose genericMatrix(R2,b (0,0),n,n)
cc=transpose genericMatrix(R2,c (0,0),2,2)
t=z 1*x 0*y 0+z 1*x 1*y 1+z 1*x 2*y 2+z 0*x 0*y 1+z 0*x 1*y 2

We now define the row-vector of length 22 defining a general element in the acting group
gl3(K) × gl3(K) × gl2(K) and the row-vector of length 18 defining a general element in the
tensor product K3 ⊗K3 ⊗K2:

abc=matrix{{A,B,C}}
xyz=matrix{{x 0..x (n-1)}}**matrix{{y 0..y (n-1)}}**matrix{{z 0,z 1}}

Next we define the group action grp and its jacobian jac, then we compute their
substitutions at the identity I = (pp0, qq0, cc0) and finally the orbit dimension of t in
K3 ⊗K3 ⊗K2:

Gx=apply(n,i->(x i=>sum(n,j->x j*a (i,j))))
Gy=apply(n,i->(y i=>sum(n,j->y j*b (i,j))))
Gz=apply(2,i->(z i=>sum(2,j->z j*c (i,j))))
grp=Gx|Gy|Gz
jac=diff(xyz,diff(transpose abc,sub(t,grp)))
ident=apply(n,j->(a (0,j)=>(ppˆ0) (0,j)))
for i from 1 to n-1 do

ident=ident|apply(n,j->(a (i,j)=>(ppˆ0) (i,j)))
for i from 0 to n-1 do

ident=ident|apply(n,j->(b (i,j)=>(qqˆ0) (i,j)))
for i from 0 to 1 do

ident=ident|apply(2,j->(c (i,j)=>(ccˆ0) (i,j)))
rank sub(jac,ident)

6.3 Dimension of GL-orbits in K2 ⊗ Sym2(Kn)

In the following we readapt the previous implementation to compute the orbit di-
mension for symmetric 2-slice tensors. Here we set n = 3 and t = λ⊗ x2

0.
The idea is the same as the previous one with few modifications since we are in the
symmetric case. First of all the acting group we work with is gl2(K) × gln(K): if
we represent an element f ∈ Sym2(Kn) by a symmetric matrix F , given a tensor
u⊗ F ∈ K2 ⊗ Sym2(Kn), the action on u⊗ F is given by

(M,P ) 7→Mu⊗ P · F ·tP
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So we need to define only one generic matrix and transpose it, that is we need to in-
troduce less variables than previously.
We start by defining the polynomial ring and the generic acting matrices:

n=3
A=a (0,0)..a (n-1,n-1)
C=c (0,0)..c (1,1)
R2=QQ[A,C,x 0..x (n-1),z 0,z 1]
pp=transpose genericMatrix(R2,a (0,0),n,n)
cc=transpose genericMatrix(R2,c (0,0),2,2)
t=z 1*x 0ˆ2

Next we define the generic symmetric matrix with quadratic monomial entries and
we compute the minima generators of its 1 × 1 minors. With the latter command we
get the quadratic monomials as a base of Sym2(Kn) and we can compute the basis of
the spaces gl2 × gln(K) and K2 ⊗ Sym2(Kn):

A=transpose matrix{{x 0..x (n-1)}}*matrix{{x 0..x (n-1)}}
S=mingens minors(1,A)
abc=matrix{{a (0,0)..a (n-1,n-1),c (0,0)..c (1,1)}}
xyz=S**matrix{{z 0,z 1}}

Now we define the action on the basis and compute its jacobian and the substitution at
the identity I = (pp0, cc0). We underline that by acting on the variables xi instead of
the variables xixj we hide the right-multiplication by tP in the sums ∑k xkPik. Finally
we compute the orbit dimension by computing the rank:

Gn=apply(n,i->(x i=>sum(n,j->x j*pp (i,j))))
G2=apply(2,i->(z i=>sum(2,j->z j*cc (i,j))))
grp=Gn|G2
jac=diff(xyz,diff(transpose abc,sub(t,grp)))
ident=apply(n,j->(a (0,j)=>(ppˆ0) (0,j)))
for i from 1 to n-1 do

ident=ident|apply(n,j->(a (i,j)=>(ppˆ0) (i,j)))
for i from 0 to 1 do

ident=ident|apply(2,j->(c (i,j)=>(ccˆ0) (i,j)))
rank sub(jac,ident)
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6.4 Nonabelian apolarity for symmetric 2-slice tensors

The following implementation was born by an unpublished research work of Prof.
Giorgio Ottaviani (University of Florence).

We will work in dimension 3. First we set the polynomial ring whose variables
correspond to the entries of a generic square matrix of size 3:

n=3
R=QQ[a (0,0)..a (n-1,n-1)]
aa=transpose genericMatrix(R,a (0,0),n,n)

Next we define a pencil (b1s, b2s) ∈ K2 ⊗ Sym2(K3) of general type as in lemma 5.3.9
so that it will decompose in three summands:

b1s=matrix{{1,0,0 R},{0,1,0},{0,0,0}}
b2s=matrix{{0,0,0 R},{0,5,0},{0,0,1}}

Now we define the map C(b1s,b2s) (5.17) extended to gl3(K) and we call it cont:

D1=diff(transpose basis(1,R),mingens minors(1,aa*b1s-b1s*transpose(aa)))
D2=diff(transpose basis(1,R),mingens minors(1,aa*b2s-b2s*transpose(aa)))
cont=D1|D2

The map has size 9 × 6: indeed dim gl3 = 9 and dim∧2(C3) = 3. Next we com-
pute its rank and the dimension r of its kernel in gl3(K): by theorem 5.3.12 we expect
r = 3.

rank cont
r=numcols gens kernel transpose cont

We now want to compute the simultaneous eigenvectors of the kernel since by the-
orem 5.3.12 they give the decomposition of the pencil. To do so we first compute the
matrices k0, k1, k2 which generate ker(C(b1s,b2s)) in gl3(K):

for i from 0 to r-1 do
k i=diff(aa,(basis(1,R)*(gens kernel transpose cont)) (0,i))

The three elements k0, k1, k2 in the kernel are diag(1, 0, 0),diag(0, 1, 0), diag(0, 0, 1) re-
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spectively and they actually commute, as expected. Moreover, they give the simul-
taneous eigenvectors e1, e2, e3 (vectors in the canonical basis): these actually give the
Kronecker form of the pencil (b1s, b2s) (it was already in such form!).

We now rewrite the previous implementation starting from a random symmetric
pencil (b1s, b2s): clearly by randomly generating it we risk to work with a symmetric
pencil which is not in general form as in lemma 5.3.9, hence theorem 5.3.12 may fail.
So in the new setting the previous implementation becomes:

n=3
R=QQ[a (0,0)..a (n-1,n-1)]
aa=transpose genericMatrix(R,a (0,0),n,n)
b1=random(Rˆ{n:0},Rˆ{n:0})
b1s=b1+transpose(b1)
b2=random(Rˆ{n:0},Rˆ{n:0})
b2s=b2+transpose(b2)
D1=diff(transpose basis(1,R),mingens minors(1,aa*b1s-b1s*transpose(aa)))
D2=diff(transpose basis(1,R),mingens minors(1,aa*b2s-b2s*transpose(aa)))
cont=D1|D2
r=numcols gens kernel transpose cont
for i from 0 to r-1 do

k i=diff(aa,(basis(1,R)*(gens kernel transpose cont)) (0,i))

A generic eigenvector v for ki may be computed by setting v = aa0 (the first col-
umn of the generic matrix aa) and by imposing that the matrix Ni =

[
ki · v

∣∣∣ v] has
rank 1, that is ki · v = αiv for a suitable αi ∈ K. But asking such rank to be 1 is
equivalent to asking v to be in the base locus of the ideal I generated by the 2 × 2
minors of Ni. Even better, asking a given v to be common eigenvector for k0, . . . , kr−1
simultaneously is equivalent to asking v to be in the base locus of the ideal I generated
by the 2× 2 minors of all Ni for i = 0 : r − 1. Hence we compute such ideal:

I=minors(2,k 0*aa {0}|aa {0})
for i from 1 to (r-1) do

I=I+minors(2,k i*aa {0}|aa {0})

However we may explicitly compute the common eigenvectors by determining the eigen-
vectors of one of the matrices which generate ker(C(b1s,b2s)), since from the hypothesis
of “generality” in lemma 5.3.9 we are considering matrices with distinct eigenvalues.
In the following vi are the common eigenvectors and Mi the matrices corresponding to
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vi ⊗ vi: we underline that we need to work in C to compute the eigenvectors and this
unfortunately leads to approximations.

for i from 0 to r-1 do
(v i=matrix ((eigenvectors(sub(k 1,CC))) 1) i, M i=v i*transpose v i)

The matrices Mi actually decompose the pencil (b1s, b2s), that is there exist vectors
(αi, βi) ∈ C2 such that (b1s, b2s) =

(∑r−1
i=0 αiMi,

∑r−1
i=0 βiMi

)
.
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